Pandas 中文参考指南

10 minutes to pandas

这是对 pandas 的简短介绍,主要针对新用户。您可以在 Cookbook 中看到更复杂的食谱。

This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook.

惯例上,我们像如下方式导入:

Customarily, we import as follows:

In [1]: import numpy as np

In [2]: import pandas as pd

Basic data structures in pandas

Pandas 提供了两种用于处理数据的类型:

Pandas provides two types of classes for handling data:

  1. Series: a one-dimensional labeled array holding data of any type such as integers, strings, Python objects etc.

  2. DataFrame: a two-dimensional data structure that holds data like a two-dimension array or a table with rows and columns.

Object creation

传入值列表以生成 Series,可以让 pandas 创建缺省的 RangeIndex

Creating a Series by passing a list of values, letting pandas create a default RangeIndex.

In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [4]: s
Out[4]:
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

使用 date_range() 和带有标签列的日期时间索引传入 NumPy 数组以生成 DataFrame

Creating a DataFrame by passing a NumPy array with a datetime index using date_range() and labeled columns:

In [5]: dates = pd.date_range("20130101", periods=6)

In [6]: dates
Out[6]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))

In [8]: df
Out[8]:
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

传入对象的字典(键是列标签,值是列值)以生成 DataFrame

Creating a DataFrame by passing a dictionary of objects where the keys are the column labels and the values are the column values.

In [9]: df2 = pd.DataFrame(
   ...:     {
   ...:         "A": 1.0,
   ...:         "B": pd.Timestamp("20130102"),
   ...:         "C": pd.Series(1, index=list(range(4)), dtype="float32"),
   ...:         "D": np.array([3] * 4, dtype="int32"),
   ...:         "E": pd.Categorical(["test", "train", "test", "train"]),
   ...:         "F": "foo",
   ...:     }
   ...: )
   ...:

In [10]: df2
Out[10]:
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo

由结果 DataFrame 生成的列具有不同的 dtypes

The columns of the resulting DataFrame have different dtypes:

In [11]: df2.dtypes
Out[11]:
A          float64
B    datetime64[s]
C          float32
D            int32
E         category
F           object
dtype: object

如果你使用 IPython,则列名(以及公共属性)的制表符补全会自动启用。以下是一些属性的子集,它们将被补全:

If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here’s a subset of the attributes that will be completed:

In [12]: df2.<TAB>  # noqa: E225, E999
df2.A                  df2.bool
df2.abs                df2.boxplot
df2.add                df2.C
df2.add_prefix         df2.clip
df2.add_suffix         df2.columns
df2.align              df2.copy
df2.all                df2.count
df2.any                df2.combine
df2.append             df2.D
df2.apply              df2.describe
df2.applymap           df2.diff
df2.B                  df2.duplicated

正如你所见,列 ABCD 会自动进行制表符补全。EF 也在其中;其余的属性已为简洁起见而截断。

As you can see, the columns A, B, C, and D are automatically tab completed. E and F are there as well; the rest of the attributes have been truncated for brevity.

Viewing data

使用 DataFrame.head()DataFrame.tail() 分别查看框架的顶部和底部行:

Use DataFrame.head() and DataFrame.tail() to view the top and bottom rows of the frame respectively:

In [13]: df.head()
Out[13]:
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [14]: df.tail(3)
Out[14]:
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
In [15]: df.index
Out[15]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [16]: df.columns
Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

使用 DataFrame.to_numpy() 返回基础数据的 NumPy 表达方式,不带索引或列标签:

Return a NumPy representation of the underlying data with DataFrame.to_numpy() without the index or column labels:

In [17]: df.to_numpy()
Out[17]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])

NumPy 数组的整个数组使用一种数据类型,而 pandas DataFrames 的每列使用一种数据类型。当你调用 DataFrame.to_numpy() 时,pandas 会找到能容纳 DataFrame 中所有数据类型的 NumPy 数据类型。如果常用数据类型为 objectDataFrame.to_numpy() 将要求复制数据。

NumPy arrays have one dtype for the entire array while pandas DataFrames have one dtype per column. When you call DataFrame.to_numpy(), pandas will find the NumPy dtype that can hold all of the dtypes in the DataFrame. If the common data type is object, DataFrame.to_numpy() will require copying data.

In [18]: df2.dtypes
Out[18]:
A          float64
B    datetime64[s]
C          float32
D            int32
E         category
F           object
dtype: object

In [19]: df2.to_numpy()
Out[19]:
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']],
      dtype=object)

describe() 显示了数据的快速统计摘要:

describe() shows a quick statistic summary of your data:

In [20]: df.describe()
Out[20]:
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

转置你的数据:

Transposing your data:

In [21]: df.T
Out[21]:
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

DataFrame.sort_index() 按轴排序:

DataFrame.sort_index() sorts by an axis:

In [22]: df.sort_index(axis=1, ascending=False)
Out[22]:
                   D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

DataFrame.sort_values() 按值排序:

DataFrame.sort_values() sorts by values:

In [23]: df.sort_values(by="B")
Out[23]:
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

Selection

虽然用于选择和设置的标准 Python/NumPy 表达直观且适用于交互式工作,但对于生产代码,我们建议使用经过优化的 pandas 数据访问方法,如 DataFrame.at()DataFrame.iat()DataFrame.loc()DataFrame.iloc()

While standard Python / NumPy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, DataFrame.at(), DataFrame.iat(), DataFrame.loc() and DataFrame.iloc().

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing.

Getitem ([])

对于 DataFrame,传入单个标签将选择一列并产生一个等同于 df.ASeries

For a DataFrame, passing a single label selects a columns and yields a Series equivalent to df.A:

In [24]: df["A"]
Out[24]:
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

对于 DataFrame,传递切片 : 选中匹配的行:

For a DataFrame, passing a slice : selects matching rows:

In [25]: df[0:3]
Out[25]:
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [26]: df["20130102":"20130104"]
Out[26]:
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

Selection by label

Selection by Label 中使用 DataFrame.loc()DataFrame.at() 查看更多信息。

选择与标签匹配的行:

Selecting a row matching a label:

In [27]: df.loc[dates[0]]
Out[27]:
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

用选择列标签选择所有行(:):

Selecting all rows (:) with a select column labels:

In [28]: df.loc[:, ["A", "B"]]
Out[28]:
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

对于标签切片,两个端点都包含其中:

For label slicing, both endpoints are included:

In [29]: df.loc["20130102":"20130104", ["A", "B"]]
Out[29]:
                   A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

选择一行和一列标签将返回标量:

Selecting a single row and column label returns a scalar:

In [30]: df.loc[dates[0], "A"]
Out[30]: 0.4691122999071863

快速获取标量(等效于先前方法):

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at[dates[0], "A"]
Out[31]: 0.4691122999071863

Selection by position

Selection by Position 中使用 DataFrame.iloc()DataFrame.iat() 查看更多信息。

使用经过整数位置选择的整数:

Select via the position of the passed integers:

In [32]: df.iloc[3]
Out[32]:
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

整型切片作用与 NumPy/Python 类似:

Integer slices acts similar to NumPy/Python:

In [33]: df.iloc[3:5, 0:2]
Out[33]:
                   A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

整数位置位置的列表:

Lists of integer position locations:

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]:
                   A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

显式切片行:

For slicing rows explicitly:

In [35]: df.iloc[1:3, :]
Out[35]:
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

显式切片列:

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3]
Out[36]:
                   B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

若要明确获取值:

For getting a value explicitly:

In [37]: df.iloc[1, 1]
Out[37]: -0.17321464905330858

快速获取标量(等效于先前方法):

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858

Boolean indexing

选择 df.A 大于 0 的行。

Select rows where df.A is greater than 0.

In [39]: df[df["A"] > 0]
Out[39]:
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

DataFrame 中满足布尔条件选择值:

Selecting values from a DataFrame where a boolean condition is met:

In [40]: df[df > 0]
Out[40]:
                   A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

使用 isin() 方法过滤:

Using isin() method for filtering:

In [41]: df2 = df.copy()

In [42]: df2["E"] = ["one", "one", "two", "three", "four", "three"]

In [43]: df2
Out[43]:
                   A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three

In [44]: df2[df2["E"].isin(["two", "four"])]
Out[44]:
                   A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

Setting

设置新列会按索引自动对齐数据:

Setting a new column automatically aligns the data by the indexes:

In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20130102", periods=6))

In [46]: s1
Out[46]:
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64

In [47]: df["F"] = s1

按标签设置值:

Setting values by label:

In [48]: df.at[dates[0], "A"] = 0

按位置设置值:

Setting values by position:

In [49]: df.iat[0, 1] = 0

通过分配 NumPy 数组进行设置:

Setting by assigning with a NumPy array:

In [50]: df.loc[:, "D"] = np.array([5] * len(df))

先前设置操作的结果:

The result of the prior setting operations:

In [51]: df
Out[51]:
                   A         B         C    D    F
2013-01-01  0.000000  0.000000 -1.509059  5.0  NaN
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5.0  2.0
2013-01-04  0.721555 -0.706771 -1.039575  5.0  3.0
2013-01-05 -0.424972  0.567020  0.276232  5.0  4.0
2013-01-06 -0.673690  0.113648 -1.478427  5.0  5.0

带有设置的 where 操作:

A where operation with setting:

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]:
                   A         B         C    D    F
2013-01-01  0.000000  0.000000 -1.509059 -5.0  NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5.0 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5.0 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5.0 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5.0 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5.0 -5.0

Missing data

对于 NumPy 数据类型,np.nan 表示缺失数据。它默认不包含在计算中。参见 Missing Data section

For NumPy data types, np.nan represents missing data. It is by default not included in computations. See the Missing Data section.

重新索引允许您更改/添加/删除指定轴上的索引。这返回一份数据的副本:

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data:

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])

In [56]: df1.loc[dates[0] : dates[1], "E"] = 1

In [57]: df1
Out[57]:
                   A         B         C    D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5.0  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5.0  2.0  NaN
2013-01-04  0.721555 -0.706771 -1.039575  5.0  3.0  NaN

DataFrame.dropna() 删除所有含有缺失数据的行:

DataFrame.dropna() drops any rows that have missing data:

In [58]: df1.dropna(how="any")
Out[58]:
                   A         B         C    D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0  1.0

DataFrame.fillna() 填充缺失数据:

DataFrame.fillna() fills missing data:

In [59]: df1.fillna(value=5)
Out[59]:
                   A         B         C    D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5.0  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5.0  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5.0  3.0  5.0

isna() 获取值等于 nan 的布尔掩码:

isna() gets the boolean mask where values are nan:

In [60]: pd.isna(df1)
Out[60]:
                A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

Operations

Stats

一般来说,运算不包含缺失数据。

Operations in general exclude missing data.

计算每列的平均值:

Calculate the mean value for each column:

In [61]: df.mean()
Out[61]:
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

计算每行的平均值:

Calculate the mean value for each row:

In [62]: df.mean(axis=1)
Out[62]:
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

使用另一个拥有不同索引或列的 SeriesDataFrame 进行运算将使结果与索引或列标签的并集对齐。此外,pandas 自动沿着指定维度广播,并且用 np.nan 填充未对齐的标签。

Operating with another Series or DataFrame with a different index or column will align the result with the union of the index or column labels. In addition, pandas automatically broadcasts along the specified dimension and will fill unaligned labels with np.nan.

In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [64]: s
Out[64]:
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [65]: df.sub(s, axis="index")
Out[65]:
                   A         B         C    D    F
2013-01-01       NaN       NaN       NaN  NaN  NaN
2013-01-02       NaN       NaN       NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

User defined functions

DataFrame.agg()DataFrame.transform() 应用用户定义的函数,分别缩小或广播其结果。

DataFrame.agg() and DataFrame.transform() applies a user defined function that reduces or broadcasts its result respectively.

In [66]: df.agg(lambda x: np.mean(x) * 5.6)
Out[66]:
A    -0.025054
B    -2.150294
C    -3.851445
D    28.000000
F    16.800000
dtype: float64

In [67]: df.transform(lambda x: x * 101.2)
Out[67]:
                     A           B           C      D      F
2013-01-01    0.000000    0.000000 -152.716721  506.0    NaN
2013-01-02  122.665737  -17.529322   12.063922  506.0  101.2
2013-01-03  -87.219115 -212.982405  -50.086843  506.0  202.4
2013-01-04   73.021382  -71.525239 -105.204988  506.0  303.6
2013-01-05  -43.007200   57.382459   27.954680  506.0  404.8
2013-01-06  -68.177398   11.501219 -149.616767  506.0  506.0

Value Counts

Histogramming and Discretization 中查看更多内容。

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]:
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64

In [70]: s.value_counts()
Out[70]:
4    5
2    2
6    2
1    1
Name: count, dtype: int64

String Methods

Series 配备了 str 属性中的一组字符串处理方法,这些方法可轻松地在数组的每个元素上进行运算,如下面的代码片段所示。在 Vectorized String Methods 中查看更多内容。

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. See more at Vectorized String Methods.

In [71]: s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])

In [72]: s.str.lower()
Out[72]:
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

pandas 为轻松地结合 SeriesDataFrame 对象提供了各种工具,它们为连接/合并类型操作中的索引和关系代数功能提供了各种类型的集合逻辑。

pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

参见 Merging section

See the Merging section.

concat() 按行串联 pandas 对象:

Concatenating pandas objects together row-wise with concat():

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

DataFrame 添加列相对较快。然而,添加行需要进行复制,并且可能昂贵。我们建议将预先构建的记录列表传递给 DataFrame 构造函数,而不是通过向其重复追加记录来构建一个 DataFrame

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

merge() 启用特定列上的 SQL 样式连接类型。请参阅 Database style joining 部分。

merge() enables SQL style join types along specific columns. See the Database style joining section.

In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})

In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})

In [79]: left
Out[79]:
   key  lval
0  foo     1
1  foo     2

In [80]: right
Out[80]:
   key  rval
0  foo     4
1  foo     5

In [81]: pd.merge(left, right, on="key")
Out[81]:
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

merge() 在唯一键上:

merge() on unique keys:

In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})

In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})

In [84]: left
Out[84]:
   key  lval
0  foo     1
1  bar     2

In [85]: right
Out[85]:
   key  rval
0  foo     4
1  bar     5

In [86]: pd.merge(left, right, on="key")
Out[86]:
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

我们指的“按组分配”是一个涉及以下一个或多个步骤的过程:

By “group by” we are referring to a process involving one or more of the following steps:

  1. Splitting the data into groups based on some criteria

  2. Applying a function to each group independently

  3. Combining the results into a data structure

请参阅 Grouping section

See the Grouping section.

In [87]: df = pd.DataFrame(
   ....:     {
   ....:         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
   ....:         "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
   ....:         "C": np.random.randn(8),
   ....:         "D": np.random.randn(8),
   ....:     }
   ....: )
   ....:

In [88]: df
Out[88]:
     A      B         C         D
0  foo    one  1.346061 -1.577585
1  bar    one  1.511763  0.396823
2  foo    two  1.627081 -0.105381
3  bar  three -0.990582 -0.532532
4  foo    two -0.441652  1.453749
5  bar    two  1.211526  1.208843
6  foo    one  0.268520 -0.080952
7  foo  three  0.024580 -0.264610

按列标签分组,选择列标签,然后将 DataFrameGroupBy.sum() 函数应用于结果组:

Grouping by a column label, selecting column labels, and then applying the DataFrameGroupBy.sum() function to the resulting groups:

In [89]: df.groupby("A")[["C", "D"]].sum()
Out[89]:
            C         D
A
bar  1.732707  1.073134
foo  2.824590 -0.574779

按多个列标签分组形成 MultiIndex

Grouping by multiple columns label forms MultiIndex.

In [90]: df.groupby(["A", "B"]).sum()
Out[90]:
                  C         D
A   B
bar one    1.511763  0.396823
    three -0.990582 -0.532532
    two    1.211526  1.208843
foo one    1.614581 -1.658537
    three  0.024580 -0.264610
    two    1.185429  1.348368

Reshaping

请参阅 Hierarchical IndexingReshaping 上的部分。

See the sections on Hierarchical Indexing and Reshaping.

Stack

In [91]: arrays = [
   ....:    ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
   ....:    ["one", "two", "one", "two", "one", "two", "one", "two"],
   ....: ]
   ....:

In [92]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])

In [93]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"])

In [94]: df2 = df[:4]

In [95]: df2
Out[95]:
                     A         B
first second
bar   one    -0.727965 -0.589346
      two     0.339969 -0.693205
baz   one    -0.339355  0.593616
      two     0.884345  1.591431

stack() 方法“压缩”了数据框列中的一个级别:

The stack() method “compresses” a level in the DataFrame’s columns:

In [96]: stacked = df2.stack(future_stack=True)

In [97]: stacked
Out[97]:
first  second
bar    one     A   -0.727965
               B   -0.589346
       two     A    0.339969
               B   -0.693205
baz    one     A   -0.339355
               B    0.593616
       two     A    0.884345
               B    1.591431
dtype: float64

对于具有“堆叠”的数据框或序列(具有 MultiIndex 作为 index), stack() 的逆向运算为 unstack(),默认情况下取消堆叠最后一个级别:

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level:

In [98]: stacked.unstack()
Out[98]:
                     A         B
first second
bar   one    -0.727965 -0.589346
      two     0.339969 -0.693205
baz   one    -0.339355  0.593616
      two     0.884345  1.591431

In [99]: stacked.unstack(1)
Out[99]:
second        one       two
first
bar   A -0.727965  0.339969
      B -0.589346 -0.693205
baz   A -0.339355  0.884345
      B  0.593616  1.591431

In [100]: stacked.unstack(0)
Out[100]:
first          bar       baz
second
one    A -0.727965 -0.339355
       B -0.589346  0.593616
two    A  0.339969  0.884345
       B -0.693205  1.591431

Pivot tables

请参阅 Pivot Tables 上的部分。

See the section on Pivot Tables.

In [101]: df = pd.DataFrame(
   .....:     {
   .....:         "A": ["one", "one", "two", "three"] * 3,
   .....:         "B": ["A", "B", "C"] * 4,
   .....:         "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2,
   .....:         "D": np.random.randn(12),
   .....:         "E": np.random.randn(12),
   .....:     }
   .....: )
   .....:

In [102]: df
Out[102]:
        A  B    C         D         E
0     one  A  foo -1.202872  0.047609
1     one  B  foo -1.814470 -0.136473
2     two  C  foo  1.018601 -0.561757
3   three  A  bar -0.595447 -1.623033
4     one  B  bar  1.395433  0.029399
5     one  C  bar -0.392670 -0.542108
6     two  A  foo  0.007207  0.282696
7   three  B  foo  1.928123 -0.087302
8     one  C  foo -0.055224 -1.575170
9     one  A  bar  2.395985  1.771208
10    two  B  bar  1.552825  0.816482
11  three  C  bar  0.166599  1.100230

pivot_table() 旋转一个 DataFrame,指定 valuesindexcolumns

pivot_table() pivots a DataFrame specifying the values, index and columns

In [103]: pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"])
Out[103]:
C             bar       foo
A     B
one   A  2.395985 -1.202872
      B  1.395433 -1.814470
      C -0.392670 -0.055224
three A -0.595447       NaN
      B       NaN  1.928123
      C  0.166599       NaN
two   A       NaN  0.007207
      B  1.552825       NaN
      C       NaN  1.018601

Time series

pandas 具有简单、强大且高效的功能,用于在频率转换期间执行重新采样运算(例如,将每秒数据转换为每五分钟数据)。这在金融应用程序中非常常见,但不限于此。请参阅 Time Series section

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section.

In [104]: rng = pd.date_range("1/1/2012", periods=100, freq="s")

In [105]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [106]: ts.resample("5Min").sum()
Out[106]:
2012-01-01    24182
Freq: 5min, dtype: int64

Series.tz_localize() 将时间序列定位到一个时区:

Series.tz_localize() localizes a time series to a time zone:

In [107]: rng = pd.date_range("3/6/2012 00:00", periods=5, freq="D")

In [108]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [109]: ts
Out[109]:
2012-03-06    1.857704
2012-03-07   -1.193545
2012-03-08    0.677510
2012-03-09   -0.153931
2012-03-10    0.520091
Freq: D, dtype: float64

In [110]: ts_utc = ts.tz_localize("UTC")

In [111]: ts_utc
Out[111]:
2012-03-06 00:00:00+00:00    1.857704
2012-03-07 00:00:00+00:00   -1.193545
2012-03-08 00:00:00+00:00    0.677510
2012-03-09 00:00:00+00:00   -0.153931
2012-03-10 00:00:00+00:00    0.520091
Freq: D, dtype: float64

Series.tz_convert() 将认识时区的时序转换为另一个时区:

Series.tz_convert() converts a timezones aware time series to another time zone:

In [112]: ts_utc.tz_convert("US/Eastern")
Out[112]:
2012-03-05 19:00:00-05:00    1.857704
2012-03-06 19:00:00-05:00   -1.193545
2012-03-07 19:00:00-05:00    0.677510
2012-03-08 19:00:00-05:00   -0.153931
2012-03-09 19:00:00-05:00    0.520091
Freq: D, dtype: float64

向时序添加一个非固定持续时间 ( BusinessDay):

Adding a non-fixed duration (BusinessDay) to a time series:

In [113]: rng
Out[113]:
DatetimeIndex(['2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09',
               '2012-03-10'],
              dtype='datetime64[ns]', freq='D')

In [114]: rng + pd.offsets.BusinessDay(5)
Out[114]:
DatetimeIndex(['2012-03-13', '2012-03-14', '2012-03-15', '2012-03-16',
               '2012-03-16'],
              dtype='datetime64[ns]', freq=None)

Categoricals

pandas 可以将分类数据包含在一个 DataFrame 中。有关完整文档,请参阅 categorical introductionAPI documentation

pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.

In [115]: df = pd.DataFrame(
   .....:     {"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}
   .....: )
   .....:

将原始成绩转换为分类数据类型:

Converting the raw grades to a categorical data type:

In [116]: df["grade"] = df["raw_grade"].astype("category")

In [117]: df["grade"]
Out[117]:
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): ['a', 'b', 'e']

将分类重命名为更有意义的名称:

Rename the categories to more meaningful names:

In [118]: new_categories = ["very good", "good", "very bad"]

In [119]: df["grade"] = df["grade"].cat.rename_categories(new_categories)

重新排列分类并同时添加缺失的分类( Series.cat() 下的 method 将默认地返回一个新的 Series):

Reorder the categories and simultaneously add the missing categories (methods under Series.cat() return a new Series by default):

In [120]: df["grade"] = df["grade"].cat.set_categories(
   .....:     ["very bad", "bad", "medium", "good", "very good"]
   .....: )
   .....:

In [121]: df["grade"]
Out[121]:
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']

排序按分类中的顺序进行,而不是按照词法顺序:

Sorting is per order in the categories, not lexical order:

In [122]: df.sort_values(by="grade")
Out[122]:
   id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good

使用 observed=False 按分类列分组还显示空分类:

Grouping by a categorical column with observed=False also shows empty categories:

In [123]: df.groupby("grade", observed=False).size()
Out[123]:
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

Plotting

参见 Plotting 文档。

See the Plotting docs.

我们使用标准惯例来引用 matplotlib API:

We use the standard convention for referencing the matplotlib API:

In [124]: import matplotlib.pyplot as plt

In [125]: plt.close("all")

方法 plt.close 用于 close 一个图形窗口:

The plt.close method is used to close a figure window:

In [126]: ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))

In [127]: ts = ts.cumsum()

In [128]: ts.plot();

当使用 Jupyter 时,图表将使用 plot() 出现。否则使用 matplotlib.pyplot.show 显示它或 matplotlib.pyplot.savefig 将其写入文件。

When using Jupyter, the plot will appear using plot(). Otherwise use matplotlib.pyplot.show to show it or matplotlib.pyplot.savefig to write it to a file.

plot() 绘制所有列:

plot() plots all columns:

In [129]: df = pd.DataFrame(
   .....:     np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"]
   .....: )
   .....:

In [130]: df = df.cumsum()

In [131]: plt.figure();

In [132]: df.plot();

In [133]: plt.legend(loc='best');

Importing and exporting data

参见 IO Tools 部分。

See the IO Tools section.

CSV

In [134]: df = pd.DataFrame(np.random.randint(0, 5, (10, 5)))

In [135]: df.to_csv("foo.csv")
In [136]: pd.read_csv("foo.csv")
Out[136]:
   Unnamed: 0  0  1  2  3  4
0           0  4  3  1  1  2
1           1  1  0  2  3  2
2           2  1  4  2  1  2
3           3  0  4  0  2  2
4           4  4  2  2  3  4
5           5  4  0  4  3  1
6           6  2  1  2  0  3
7           7  4  0  4  4  4
8           8  4  4  1  0  1
9           9  0  4  3  0  3

Parquet

写入 Parquet 文件:

Writing to a Parquet file:

In [137]: df.to_parquet("foo.parquet")

使用 read_parquet() 从 Parquet 文件 Store 中读取:

Reading from a Parquet file Store using read_parquet():

In [138]: pd.read_parquet("foo.parquet")
Out[138]:
   0  1  2  3  4
0  4  3  1  1  2
1  1  0  2  3  2
2  1  4  2  1  2
3  0  4  0  2  2
4  4  2  2  3  4
5  4  0  4  3  1
6  2  1  2  0  3
7  4  0  4  4  4
8  4  4  1  0  1
9  0  4  3  0  3

Excel

读取和写入 Excel

Reading and writing to Excel.

使用 DataFrame.to_excel() 写入 excel 文件:

Writing to an excel file using DataFrame.to_excel():

In [139]: df.to_excel("foo.xlsx", sheet_name="Sheet1")

使用 read_excel() 从 excel 文件中读取:

Reading from an excel file using read_excel():

In [140]: pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"])
Out[140]:
   Unnamed: 0  0  1  2  3  4
0           0  4  3  1  1  2
1           1  1  0  2  3  2
2           2  1  4  2  1  2
3           3  0  4  0  2  2
4           4  4  2  2  3  4
5           5  4  0  4  3  1
6           6  2  1  2  0  3
7           7  4  0  4  4  4
8           8  4  4  1  0  1
9           9  0  4  3  0  3

Gotchas

如果您尝试对 SeriesDataFrame 执行布尔操作,您可能会看到以下异常:

If you are attempting to perform a boolean operation on a Series or DataFrame you might see an exception like:

In [141]: if pd.Series([False, True, False]):
   .....:      print("I was true")
   .....:
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-141-b27eb9c1dfc0> in ?()
----> 1 if pd.Series([False, True, False]):
      2      print("I was true")

~/work/pandas/pandas/pandas/core/generic.py in ?(self)
   1575     @final
   1576     def __nonzero__(self) -> NoReturn:
-> 1577         raise ValueError(
   1578             f"The truth value of a {type(self).__name__} is ambiguous. "
   1579             "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
   1580         )

ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

有关说明和要执行的操作,请参见 ComparisonsGotchas

See Comparisons and Gotchas for an explanation and what to do.