Pandas 中文参考指南
MultiIndex / advanced indexing
有关常规索引文档,请参阅 Indexing and Selecting Data。
警告
是否为设置操作返回副本或引用可能取决于具体情况。这有时称为 chained assignment,应避免使用。请参阅 Returning a View versus Copy。
参阅 cookbook 了解一些高级策略。
Hierarchical indexing (MultiIndex)
分层/多级索引非常激动人心的,因为它为进行相当精细的数据分析和操作敞开了大门,特别是对于使用高维数据的情况。从本质上说,它允许你将数据存储和处理到一个任意维度的指定维度数据结构中,例如 Series(1 维)和 DataFrame(2 维)。
在本节中,我们会展示我们通过“分层”索引的含义,以及它如何与上面以及前几节中所描述的所有 Pandas 索引功能进行集成。稍后,在讨论 group by 和 pivoting and reshaping data 时,我们会展示一些非平凡的应用程序来说明它如何帮助组织数据,以便进行分析。
请参阅 cookbook 了解一些高级策略。
Creating a MultiIndex (hierarchical index) object
MultiIndex 对象是标准 Index 对象的分层模拟对象,它通常存储 Pandas 对象中的轴标签。你可以将 MultiIndex 视为元组数组,其中每个元组都是唯一的。可以使用数组列表(使用 MultiIndex.from_arrays())、元组数组(使用 MultiIndex.from_tuples())、一系列迭代器(使用 MultiIndex.from_product())或 DataFrame(使用 MultiIndex.from_frame())来创建 MultiIndex。当 Index 构造函数接收到一个元组列表时,它将尝试返回一个 MultiIndex。以下示例演示了初始化 MultiIndex 的不同方法。
In [1]: arrays = [
...: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
...: ["one", "two", "one", "two", "one", "two", "one", "two"],
...: ]
...:
In [2]: tuples = list(zip(*arrays))
In [3]: tuples
Out[3]:
[('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')]
In [4]: index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"])
In [5]: index
Out[5]:
MultiIndex([('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')],
names=['first', 'second'])
In [6]: s = pd.Series(np.random.randn(8), index=index)
In [7]: s
Out[7]:
first second
bar one 0.469112
two -0.282863
baz one -1.509059
two -1.135632
foo one 1.212112
two -0.173215
qux one 0.119209
two -1.044236
dtype: float64
如果你想要迭代中所有元素的每一个配对,可以使用 MultiIndex.from_product() 方法可能会更简单:
In [8]: iterables = [["bar", "baz", "foo", "qux"], ["one", "two"]]
In [9]: pd.MultiIndex.from_product(iterables, names=["first", "second"])
Out[9]:
MultiIndex([('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')],
names=['first', 'second'])
你还可以使用 MultiIndex.from_frame() 方法直接从 DataFrame 构造一个 MultiIndex。这是一个 MultiIndex.to_frame() 的补充方法。
In [10]: df = pd.DataFrame(
....: [["bar", "one"], ["bar", "two"], ["foo", "one"], ["foo", "two"]],
....: columns=["first", "second"],
....: )
....:
In [11]: pd.MultiIndex.from_frame(df)
Out[11]:
MultiIndex([('bar', 'one'),
('bar', 'two'),
('foo', 'one'),
('foo', 'two')],
names=['first', 'second'])
为方便起见,你可以直接将数组列表传递到 Series 或 DataFrame,以自动构建一个 MultiIndex:
In [12]: arrays = [
....: np.array(["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"]),
....: np.array(["one", "two", "one", "two", "one", "two", "one", "two"]),
....: ]
....:
In [13]: s = pd.Series(np.random.randn(8), index=arrays)
In [14]: s
Out[14]:
bar one -0.861849
two -2.104569
baz one -0.494929
two 1.071804
foo one 0.721555
two -0.706771
qux one -1.039575
two 0.271860
dtype: float64
In [15]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays)
In [16]: df
Out[16]:
0 1 2 3
bar one -0.424972 0.567020 0.276232 -1.087401
two -0.673690 0.113648 -1.478427 0.524988
baz one 0.404705 0.577046 -1.715002 -1.039268
two -0.370647 -1.157892 -1.344312 0.844885
foo one 1.075770 -0.109050 1.643563 -1.469388
two 0.357021 -0.674600 -1.776904 -0.968914
qux one -1.294524 0.413738 0.276662 -0.472035
two -0.013960 -0.362543 -0.006154 -0.923061
所有 MultiIndex 构造函数均接受 names 自变量,它用来存储各个级别的字符串名称。如果没有提供名称,则会分配 None:
In [17]: df.index.names
Out[17]: FrozenList([None, None])
此索引可以支持 Pandas 对象的任何轴,索引级别的数量由你决定:
In [18]: df = pd.DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
In [19]: df
Out[19]:
first bar baz ... foo qux
second one two one ... two one two
A 0.895717 0.805244 -1.206412 ... 1.340309 -1.170299 -0.226169
B 0.410835 0.813850 0.132003 ... -1.187678 1.130127 -1.436737
C -1.413681 1.607920 1.024180 ... -2.211372 0.974466 -2.006747
[3 rows x 8 columns]
In [20]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])
Out[20]:
first bar baz foo
second one two one two one two
first second
bar one -0.410001 -0.078638 0.545952 -1.219217 -1.226825 0.769804
two -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734
baz one 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738
two 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849
foo one -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232
two 0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441
我们“稀疏化”了索引的高级别,以使控制台输出对眼睛来说更友好。请注意,可以利用 pandas.set_options() 中的 multi_sparse 选项来控制显示索引的方式:
In [21]: with pd.option_context("display.multi_sparse", False):
....: df
....:
需要注意的是,没有什么可以阻止你将元组用作轴上的原子标签:
In [22]: pd.Series(np.random.randn(8), index=tuples)
Out[22]:
(bar, one) -1.236269
(bar, two) 0.896171
(baz, one) -0.487602
(baz, two) -0.082240
(foo, one) -2.182937
(foo, two) 0.380396
(qux, one) 0.084844
(qux, two) 0.432390
dtype: float64
MultiIndex 至关重要,因为正如我们将在下文和文档的后续部分中所描述的那样,它可以让你分组、选择和调整操作。正如你将在后面的部分中看到的那样,你可能会发现自己正在使用分层索引的数据,而不需要自己显式地创建一个 MultiIndex。然而,在从文件中加载数据时,你可能希望在准备数据集时生成自己的 MultiIndex。
Reconstructing the level labels
方法 get_level_values() 将返回特定级别每个位置的标签向量:
In [23]: index.get_level_values(0)
Out[23]: Index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object', name='first')
In [24]: index.get_level_values("second")
Out[24]: Index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object', name='second')
Basic indexing on axis with MultiIndex
分层索引的一项重要特性是,你可以通过识别数据中子组的“部分”标签来选择数据。部分选择以完全类似于在常规 DataFrame 中选择列的方式“删除”分层索引的级别:
In [25]: df["bar"]
Out[25]:
second one two
A 0.895717 0.805244
B 0.410835 0.813850
C -1.413681 1.607920
In [26]: df["bar", "one"]
Out[26]:
A 0.895717
B 0.410835
C -1.413681
Name: (bar, one), dtype: float64
In [27]: df["bar"]["one"]
Out[27]:
A 0.895717
B 0.410835
C -1.413681
Name: one, dtype: float64
In [28]: s["qux"]
Out[28]:
one -1.039575
two 0.271860
dtype: float64
有关如何在更深层次进行选择,请参阅 Cross-section with hierarchical index。
Defined levels
MultiIndex 保留已定义的索引的所有级别,即使它们实际上没有被使用。在对索引进行切片时,你可能会注意到这一点。例如:
In [29]: df.columns.levels # original MultiIndex
Out[29]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']])
In [30]: df[["foo","qux"]].columns.levels # sliced
Out[30]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']])
这是为了避免对级别进行重新计算,以使切片具有很高的性能。如果你只想看到已使用的级别,可以使用 get_level_values() 方法。
In [31]: df[["foo", "qux"]].columns.to_numpy()
Out[31]:
array([('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')],
dtype=object)
# for a specific level
In [32]: df[["foo", "qux"]].columns.get_level_values(0)
Out[32]: Index(['foo', 'foo', 'qux', 'qux'], dtype='object', name='first')
要仅使用已使用的级别重建 MultiIndex,可以使用 remove_unused_levels() 方法。
In [33]: new_mi = df[["foo", "qux"]].columns.remove_unused_levels()
In [34]: new_mi.levels
Out[34]: FrozenList([['foo', 'qux'], ['one', 'two']])
Data alignment and using reindex
在轴上具有 MultiIndex 的不同索引对象之间的操作将按预期的方式进行;数据对齐方式将与元组索引保持一致:
In [35]: s + s[:-2]
Out[35]:
bar one -1.723698
two -4.209138
baz one -0.989859
two 2.143608
foo one 1.443110
two -1.413542
qux one NaN
two NaN
dtype: float64
In [36]: s + s[::2]
Out[36]:
bar one -1.723698
two NaN
baz one -0.989859
two NaN
foo one 1.443110
two NaN
qux one -2.079150
two NaN
dtype: float64
函数 Series/DataFrames 的 reindex() 方法可以用另一个 MultiIndex,甚至元组的列表或数组来调用:
In [37]: s.reindex(index[:3])
Out[37]:
first second
bar one -0.861849
two -2.104569
baz one -0.494929
dtype: float64
In [38]: s.reindex([("foo", "two"), ("bar", "one"), ("qux", "one"), ("baz", "one")])
Out[38]:
foo two -0.706771
bar one -0.861849
qux one -1.039575
baz one -0.494929
dtype: float64
Advanced indexing with hierarchical index
在高级索引中语法集成 MultiIndex 和 .loc 具有挑战性,但我们的目标是集成两者。MultiIndex 键通常采用元组形式。例如,以下代码可以按预期工作:
In [39]: df = df.T
In [40]: df
Out[40]:
A B C
first second
bar one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466
two -0.226169 -1.436737 -2.006747
In [41]: df.loc[("bar", "two")]
Out[41]:
A 0.805244
B 0.813850
C 1.607920
Name: (bar, two), dtype: float64
请注意,df.loc['bar', 'two'] 在此示例中也可以工作,但这种简写符号通常会导致歧义。
如果您还想使用 .loc 索引特定列,则必须使用以下元组:
In [42]: df.loc[("bar", "two"), "A"]
Out[42]: 0.8052440253863785
你不必通过仅传递元组的前几个元素来指定 MultiIndex 的所有级别。例如,可以使用“部分”索引来获取第一个级别中 bar 的所有元素,如下所示:
In [43]: df.loc["bar"]
Out[43]:
A B C
second
one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
这是稍显冗长的符号 df.loc[('bar',),](在此示例中,等效于 df.loc['bar',])的缩写。
“部分”切片也非常好用。
In [44]: df.loc["baz":"foo"]
Out[44]:
A B C
first second
baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
你可以通过提供元组的切片,使用“值范围”进行切片。
In [45]: df.loc[("baz", "two"):("qux", "one")]
Out[45]:
A B C
first second
baz two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466
In [46]: df.loc[("baz", "two"):"foo"]
Out[46]:
A B C
first second
baz two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
传递标签或元组的列表类似于重新索引:
In [47]: df.loc[[("bar", "two"), ("qux", "one")]]
Out[47]:
A B C
first second
bar two 0.805244 0.813850 1.607920
qux one -1.170299 1.130127 0.974466
当涉及索引时,很重要的一点是,元组和列表在 pandas 中的处理方式并不相同。元组解释为一个多级键,而列表用于指定多个键。或者换句话说,元组水平放置(跨越级别),列表垂直放置(扫描级别)。 |
重要的是,元组列表索引几个完整的 MultiIndex 键,而列表元组引用一个级别中的几个值:
In [48]: s = pd.Series(
....: [1, 2, 3, 4, 5, 6],
....: index=pd.MultiIndex.from_product([["A", "B"], ["c", "d", "e"]]),
....: )
....:
In [49]: s.loc[[("A", "c"), ("B", "d")]] # list of tuples
Out[49]:
A c 1
B d 5
dtype: int64
In [50]: s.loc[(["A", "B"], ["c", "d"])] # tuple of lists
Out[50]:
A c 1
d 2
B c 4
d 5
dtype: int64
Using slicers
你可以通过提供多个索引元来对 MultiIndex 进行切片。
你可以提供任何选择器,就好像你正在通过标签进行索引一样,请参见 Selection by Label,包括切片、标签列表、标签和布尔索引。
你可以使用 slice(None) 选择该级别的所有内容。你不必指定更深层次的级别,它们将被隐含为 slice(None)。
与往常一样,切片器两侧都包括在内,因为这是标签索引。
警告
你应该在 .loc 指定符中指定所有轴,这意味着针对索引和列的索引元。在某些情况下,传递的索引元可能会被误解释为同时对两个轴进行索引,而不是对行进行 MultiIndex 索引。
你应该这样做:
df.loc[(slice("A1", "A3"), ...), :] # noqa: E999
你不应该这样做:
df.loc[(slice("A1", "A3"), ...)] # noqa: E999
In [51]: def mklbl(prefix, n):
....: return ["%s%s" % (prefix, i) for i in range(n)]
....:
In [52]: miindex = pd.MultiIndex.from_product(
....: [mklbl("A", 4), mklbl("B", 2), mklbl("C", 4), mklbl("D", 2)]
....: )
....:
In [53]: micolumns = pd.MultiIndex.from_tuples(
....: [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"]
....: )
....:
In [54]: dfmi = (
....: pd.DataFrame(
....: np.arange(len(miindex) * len(micolumns)).reshape(
....: (len(miindex), len(micolumns))
....: ),
....: index=miindex,
....: columns=micolumns,
....: )
....: .sort_index()
....: .sort_index(axis=1)
....: )
....:
In [55]: dfmi
Out[55]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
D1 5 4 7 6
C1 D0 9 8 11 10
D1 13 12 15 14
C2 D0 17 16 19 18
... ... ... ... ...
A3 B1 C1 D1 237 236 239 238
C2 D0 241 240 243 242
D1 245 244 247 246
C3 D0 249 248 251 250
D1 253 252 255 254
[64 rows x 4 columns]
使用切片、列表和标签进行基本 MultiIndex 切片。
In [56]: dfmi.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
Out[56]:
lvl0 a b
lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74
D1 77 76 79 78
C3 D0 89 88 91 90
D1 93 92 95 94
B1 C1 D0 105 104 107 106
... ... ... ... ...
A3 B0 C3 D1 221 220 223 222
B1 C1 D0 233 232 235 234
D1 237 236 239 238
C3 D0 249 248 251 250
D1 253 252 255 254
[24 rows x 4 columns]
你可以使用 : 而不是 slice(None) 促进了更自然的语法的 pandas.IndexSlice。
In [57]: idx = pd.IndexSlice
In [58]: dfmi.loc[idx[:, :, ["C1", "C3"]], idx[:, "foo"]]
Out[58]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10
D1 12 14
C3 D0 24 26
D1 28 30
B1 C1 D0 40 42
... ... ...
A3 B0 C3 D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]
使用此方法可以在多个轴上同时执行相当复杂的选项。
In [59]: dfmi.loc["A1", (slice(None), "foo")]
Out[59]:
lvl0 a b
lvl1 foo foo
B0 C0 D0 64 66
D1 68 70
C1 D0 72 74
D1 76 78
C2 D0 80 82
... ... ...
B1 C1 D1 108 110
C2 D0 112 114
D1 116 118
C3 D0 120 122
D1 124 126
[16 rows x 2 columns]
In [60]: dfmi.loc[idx[:, :, ["C1", "C3"]], idx[:, "foo"]]
Out[60]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10
D1 12 14
C3 D0 24 26
D1 28 30
B1 C1 D0 40 42
... ... ...
A3 B0 C3 D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]
你可以使用布尔索引器来提供与值有关的选项。
In [61]: mask = dfmi[("a", "foo")] > 200
In [62]: dfmi.loc[idx[mask, :, ["C1", "C3"]], idx[:, "foo"]]
Out[62]:
lvl0 a b
lvl1 foo foo
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
您还可以为 .loc 指定 axis 参数,以便在单个轴上解释传递的切片机。
In [63]: dfmi.loc(axis=0)[:, :, ["C1", "C3"]]
Out[63]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C1 D0 9 8 11 10
D1 13 12 15 14
C3 D0 25 24 27 26
D1 29 28 31 30
B1 C1 D0 41 40 43 42
... ... ... ... ...
A3 B0 C3 D1 221 220 223 222
B1 C1 D0 233 232 235 234
D1 237 236 239 238
C3 D0 249 248 251 250
D1 253 252 255 254
[32 rows x 4 columns]
此外,可以使用以下方法设置值。
In [64]: df2 = dfmi.copy()
In [65]: df2.loc(axis=0)[:, :, ["C1", "C3"]] = -10
In [66]: df2
Out[66]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
D1 5 4 7 6
C1 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10
C2 D0 17 16 19 18
... ... ... ... ...
A3 B1 C1 D1 -10 -10 -10 -10
C2 D0 241 240 243 242
D1 245 244 247 246
C3 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10
[64 rows x 4 columns]
您还可以使用可对齐对象的右手侧。
In [67]: df2 = dfmi.copy()
In [68]: df2.loc[idx[:, :, ["C1", "C3"]], :] = df2 * 1000
In [69]: df2
Out[69]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
D1 5 4 7 6
C1 D0 9000 8000 11000 10000
D1 13000 12000 15000 14000
C2 D0 17 16 19 18
... ... ... ... ...
A3 B1 C1 D1 237000 236000 239000 238000
C2 D0 241 240 243 242
D1 245 244 247 246
C3 D0 249000 248000 251000 250000
D1 253000 252000 255000 254000
[64 rows x 4 columns]
Cross-section
DataFrame 的 xs() 方法还采用一个等级参数,以便更轻松地在 MultiIndex 的特定等级上选择数据。
In [70]: df
Out[70]:
A B C
first second
bar one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466
two -0.226169 -1.436737 -2.006747
In [71]: df.xs("one", level="second")
Out[71]:
A B C
first
bar 0.895717 0.410835 -1.413681
baz -1.206412 0.132003 1.024180
foo 1.431256 -0.076467 0.875906
qux -1.170299 1.130127 0.974466
# using the slicers
In [72]: df.loc[(slice(None), "one"), :]
Out[72]:
A B C
first second
bar one 0.895717 0.410835 -1.413681
baz one -1.206412 0.132003 1.024180
foo one 1.431256 -0.076467 0.875906
qux one -1.170299 1.130127 0.974466
您还可以通过提供轴参数使用 xs 在列上进行选择。
In [73]: df = df.T
In [74]: df.xs("one", level="second", axis=1)
Out[74]:
first bar baz foo qux
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466
# using the slicers
In [75]: df.loc[:, (slice(None), "one")]
Out[75]:
first bar baz foo qux
second one one one one
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466
xs 还允许使用多个键进行选择。
In [76]: df.xs(("one", "bar"), level=("second", "first"), axis=1)
Out[76]:
first bar
second one
A 0.895717
B 0.410835
C -1.413681
# using the slicers
In [77]: df.loc[:, ("bar", "one")]
Out[77]:
A 0.895717
B 0.410835
C -1.413681
Name: (bar, one), dtype: float64
您可以将 drop_level=False 传递给 xs 以保留选定的级别。
In [78]: df.xs("one", level="second", axis=1, drop_level=False)
Out[78]:
first bar baz foo qux
second one one one one
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466
将上述情况与使用 drop_level=True(默认值)的结果进行比较。
In [79]: df.xs("one", level="second", axis=1, drop_level=True)
Out[79]:
first bar baz foo qux
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466
Advanced reindexing and alignment
In [80]: midx = pd.MultiIndex(
....: levels=[["zero", "one"], ["x", "y"]], codes=[[1, 1, 0, 0], [1, 0, 1, 0]]
....: )
....:
In [81]: df = pd.DataFrame(np.random.randn(4, 2), index=midx)
In [82]: df
Out[82]:
0 1
one y 1.519970 -0.493662
x 0.600178 0.274230
zero y 0.132885 -0.023688
x 2.410179 1.450520
In [83]: df2 = df.groupby(level=0).mean()
In [84]: df2
Out[84]:
0 1
one 1.060074 -0.109716
zero 1.271532 0.713416
In [85]: df2.reindex(df.index, level=0)
Out[85]:
0 1
one y 1.060074 -0.109716
x 1.060074 -0.109716
zero y 1.271532 0.713416
x 1.271532 0.713416
# aligning
In [86]: df_aligned, df2_aligned = df.align(df2, level=0)
In [87]: df_aligned
Out[87]:
0 1
one y 1.519970 -0.493662
x 0.600178 0.274230
zero y 0.132885 -0.023688
x 2.410179 1.450520
In [88]: df2_aligned
Out[88]:
0 1
one y 1.060074 -0.109716
x 1.060074 -0.109716
zero y 1.271532 0.713416
x 1.271532 0.713416
Swapping levels with swaplevel
swaplevel() 方法可以切换两个级别的顺序:
In [89]: df[:5]
Out[89]:
0 1
one y 1.519970 -0.493662
x 0.600178 0.274230
zero y 0.132885 -0.023688
x 2.410179 1.450520
In [90]: df[:5].swaplevel(0, 1, axis=0)
Out[90]:
0 1
y one 1.519970 -0.493662
x one 0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520
Reordering levels with reorder_levels
reorder_levels() 方法概括了 swaplevel 方法,允许您一步完成层次索引级别的排列:
In [91]: df[:5].reorder_levels([1, 0], axis=0)
Out[91]:
0 1
y one 1.519970 -0.493662
x one 0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520
Renaming names of an Index or MultiIndex
rename() 方法用于重命名 MultiIndex 的标签,通常用于重命名 DataFrame 的列。rename 的 columns 参数允许指定仅包含想要重命名的列的字典。
In [92]: df.rename(columns={0: "col0", 1: "col1"})
Out[92]:
col0 col1
one y 1.519970 -0.493662
x 0.600178 0.274230
zero y 0.132885 -0.023688
x 2.410179 1.450520
此方法还可以用于重命名 DataFrame 的主索引的特定标签。
In [93]: df.rename(index={"one": "two", "y": "z"})
Out[93]:
0 1
two z 1.519970 -0.493662
x 0.600178 0.274230
zero z 0.132885 -0.023688
x 2.410179 1.450520
rename_axis() 方法用于重命名 Index 或 MultiIndex 的名称。特别是,可以指定 MultiIndex 的级别的名称,这在稍后使用 reset_index() 将 MultiIndex 的值移动到列时很有用。
In [94]: df.rename_axis(index=["abc", "def"])
Out[94]:
0 1
abc def
one y 1.519970 -0.493662
x 0.600178 0.274230
zero y 0.132885 -0.023688
x 2.410179 1.450520
请注意,DataFrame 的列是一个索引,因此与 columns 参数一起使用 rename_axis 将更改该索引的名称。
In [95]: df.rename_axis(columns="Cols").columns
Out[95]: RangeIndex(start=0, stop=2, step=1, name='Cols')
rename 和 rename_axis 都支持指定一个字典、Series 或映射函数,以将标签/名称映射到新值。
直接使用 Index 对象(而不是通过 DataFrame)时,可以利用 Index.set_names() 更改名称。
In [96]: mi = pd.MultiIndex.from_product([[1, 2], ["a", "b"]], names=["x", "y"])
In [97]: mi.names
Out[97]: FrozenList(['x', 'y'])
In [98]: mi2 = mi.rename("new name", level=0)
In [99]: mi2
Out[99]:
MultiIndex([(1, 'a'),
(1, 'b'),
(2, 'a'),
(2, 'b')],
names=['new name', 'y'])
你无法通过层来设置 MultiIndex 的名称。
In [100]: mi.levels[0].name = "name via level"
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[100], line 1
----> 1 mi.levels[0].name = "name via level"
File ~/work/pandas/pandas/pandas/core/indexes/base.py:1690, in Index.name(self, value)
1686 @name.setter
1687 def name(self, value: Hashable) -> None:
1688 if self._no_setting_name:
1689 # Used in MultiIndex.levels to avoid silently ignoring name updates.
-> 1690 raise RuntimeError(
1691 "Cannot set name on a level of a MultiIndex. Use "
1692 "'MultiIndex.set_names' instead."
1693 )
1694 maybe_extract_name(value, None, type(self))
1695 self._name = value
RuntimeError: Cannot set name on a level of a MultiIndex. Use 'MultiIndex.set_names' instead.
使用 Index.set_names() 代替。
Sorting a MultiIndex
要有效地对 MultiIndex 的对象进行索引和切片,需要对其进行排序。与任何索引一样,可以使用 sort_index()。
In [101]: import random
In [102]: random.shuffle(tuples)
In [103]: s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))
In [104]: s
Out[104]:
qux two 0.206053
bar one -0.251905
foo one -2.213588
qux one 1.063327
foo two 1.266143
baz two 0.299368
bar two -0.863838
baz one 0.408204
dtype: float64
In [105]: s.sort_index()
Out[105]:
bar one -0.251905
two -0.863838
baz one 0.408204
two 0.299368
foo one -2.213588
two 1.266143
qux one 1.063327
two 0.206053
dtype: float64
In [106]: s.sort_index(level=0)
Out[106]:
bar one -0.251905
two -0.863838
baz one 0.408204
two 0.299368
foo one -2.213588
two 1.266143
qux one 1.063327
two 0.206053
dtype: float64
In [107]: s.sort_index(level=1)
Out[107]:
bar one -0.251905
baz one 0.408204
foo one -2.213588
qux one 1.063327
bar two -0.863838
baz two 0.299368
foo two 1.266143
qux two 0.206053
dtype: float64
如果 MultiIndex 层已命名,你也可以将层名称传递给 sort_index。
In [108]: s.index = s.index.set_names(["L1", "L2"])
In [109]: s.sort_index(level="L1")
Out[109]:
L1 L2
bar one -0.251905
two -0.863838
baz one 0.408204
two 0.299368
foo one -2.213588
two 1.266143
qux one 1.063327
two 0.206053
dtype: float64
In [110]: s.sort_index(level="L2")
Out[110]:
L1 L2
bar one -0.251905
baz one 0.408204
foo one -2.213588
qux one 1.063327
bar two -0.863838
baz two 0.299368
foo two 1.266143
qux two 0.206053
dtype: float64
在高维对象上,如果有 MultiIndex,你可以按层对其他任意轴进行排序:
In [111]: df.T.sort_index(level=1, axis=1)
Out[111]:
one zero one zero
x x y y
0 0.600178 2.410179 1.519970 0.132885
1 0.274230 1.450520 -0.493662 -0.023688
即使数据未排序,索引仍将起作用,但会相当低效(并显示 PerformanceWarning)。它还将返回数据的副本而不是视图:
In [112]: dfm = pd.DataFrame(
.....: {"jim": [0, 0, 1, 1], "joe": ["x", "x", "z", "y"], "jolie": np.random.rand(4)}
.....: )
.....:
In [113]: dfm = dfm.set_index(["jim", "joe"])
In [114]: dfm
Out[114]:
jolie
jim joe
0 x 0.490671
x 0.120248
1 z 0.537020
y 0.110968
In [115]: dfm.loc[(1, 'z')]
Out[115]:
jolie
jim joe
1 z 0.53702
此外,如果你尝试索引未完全按词法排序的内容,这可能会引发:
In [116]: dfm.loc[(0, 'y'):(1, 'z')]
---------------------------------------------------------------------------
UnsortedIndexError Traceback (most recent call last)
Cell In[116], line 1
----> 1 dfm.loc[(0, 'y'):(1, 'z')]
File ~/work/pandas/pandas/pandas/core/indexing.py:1191, in _LocationIndexer.__getitem__(self, key)
1189 maybe_callable = com.apply_if_callable(key, self.obj)
1190 maybe_callable = self._check_deprecated_callable_usage(key, maybe_callable)
-> 1191 return self._getitem_axis(maybe_callable, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexing.py:1411, in _LocIndexer._getitem_axis(self, key, axis)
1409 if isinstance(key, slice):
1410 self._validate_key(key, axis)
-> 1411 return self._get_slice_axis(key, axis=axis)
1412 elif com.is_bool_indexer(key):
1413 return self._getbool_axis(key, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexing.py:1443, in _LocIndexer._get_slice_axis(self, slice_obj, axis)
1440 return obj.copy(deep=False)
1442 labels = obj._get_axis(axis)
-> 1443 indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step)
1445 if isinstance(indexer, slice):
1446 return self.obj._slice(indexer, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6662, in Index.slice_indexer(self, start, end, step)
6618 def slice_indexer(
6619 self,
6620 start: Hashable | None = None,
6621 end: Hashable | None = None,
6622 step: int | None = None,
6623 ) -> slice:
6624 """
6625 Compute the slice indexer for input labels and step.
6626
(...)
6660 slice(1, 3, None)
6661 """
-> 6662 start_slice, end_slice = self.slice_locs(start, end, step=step)
6664 # return a slice
6665 if not is_scalar(start_slice):
File ~/work/pandas/pandas/pandas/core/indexes/multi.py:2904, in MultiIndex.slice_locs(self, start, end, step)
2852 """
2853 For an ordered MultiIndex, compute the slice locations for input
2854 labels.
(...)
2900 sequence of such.
2901 """
2902 # This function adds nothing to its parent implementation (the magic
2903 # happens in get_slice_bound method), but it adds meaningful doc.
-> 2904 return super().slice_locs(start, end, step)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6879, in Index.slice_locs(self, start, end, step)
6877 start_slice = None
6878 if start is not None:
-> 6879 start_slice = self.get_slice_bound(start, "left")
6880 if start_slice is None:
6881 start_slice = 0
File ~/work/pandas/pandas/pandas/core/indexes/multi.py:2848, in MultiIndex.get_slice_bound(self, label, side)
2846 if not isinstance(label, tuple):
2847 label = (label,)
-> 2848 return self._partial_tup_index(label, side=side)
File ~/work/pandas/pandas/pandas/core/indexes/multi.py:2908, in MultiIndex._partial_tup_index(self, tup, side)
2906 def _partial_tup_index(self, tup: tuple, side: Literal["left", "right"] = "left"):
2907 if len(tup) > self._lexsort_depth:
-> 2908 raise UnsortedIndexError(
2909 f"Key length ({len(tup)}) was greater than MultiIndex lexsort depth "
2910 f"({self._lexsort_depth})"
2911 )
2913 n = len(tup)
2914 start, end = 0, len(self)
UnsortedIndexError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'
MultiIndex 上的 is_monotonic_increasing() 方法显示索引是否已排序:
In [117]: dfm.index.is_monotonic_increasing
Out[117]: False
In [118]: dfm = dfm.sort_index()
In [119]: dfm
Out[119]:
jolie
jim joe
0 x 0.490671
x 0.120248
1 y 0.110968
z 0.537020
In [120]: dfm.index.is_monotonic_increasing
Out[120]: True
现在选择可以按预期进行。
In [121]: dfm.loc[(0, "y"):(1, "z")]
Out[121]:
jolie
jim joe
1 y 0.110968
z 0.537020
Take methods
与 NumPy ndarrays 类似,pandas Index、Series 和 DataFrame 也提供了 take() 方法,该方法可沿着给定 axis 检索在给定索引处的元素。给定的索引必须是整数索引位置的列表或 ndarray。take 也将接受负整数作为相对于对象末尾的相对位置。
In [122]: index = pd.Index(np.random.randint(0, 1000, 10))
In [123]: index
Out[123]: Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64')
In [124]: positions = [0, 9, 3]
In [125]: index[positions]
Out[125]: Index([214, 329, 567], dtype='int64')
In [126]: index.take(positions)
Out[126]: Index([214, 329, 567], dtype='int64')
In [127]: ser = pd.Series(np.random.randn(10))
In [128]: ser.iloc[positions]
Out[128]:
0 -0.179666
9 1.824375
3 0.392149
dtype: float64
In [129]: ser.take(positions)
Out[129]:
0 -0.179666
9 1.824375
3 0.392149
dtype: float64
对于 DataFrames,给定的索引应为指定行或列位置的一维列表或 ndarray。
In [130]: frm = pd.DataFrame(np.random.randn(5, 3))
In [131]: frm.take([1, 4, 3])
Out[131]:
0 1 2
1 -1.237881 0.106854 -1.276829
4 0.629675 -1.425966 1.857704
3 0.979542 -1.633678 0.615855
In [132]: frm.take([0, 2], axis=1)
Out[132]:
0 2
0 0.595974 0.601544
1 -1.237881 -1.276829
2 -0.767101 1.499591
3 0.979542 0.615855
4 0.629675 1.857704
需要注意的是,pandas 对象上的 take 方法不适用于布尔索引,可能会返回意外结果。
In [133]: arr = np.random.randn(10)
In [134]: arr.take([False, False, True, True])
Out[134]: array([-1.1935, -1.1935, 0.6775, 0.6775])
In [135]: arr[[0, 1]]
Out[135]: array([-1.1935, 0.6775])
In [136]: ser = pd.Series(np.random.randn(10))
In [137]: ser.take([False, False, True, True])
Out[137]:
0 0.233141
0 0.233141
1 -0.223540
1 -0.223540
dtype: float64
In [138]: ser.iloc[[0, 1]]
Out[138]:
0 0.233141
1 -0.223540
dtype: float64
最后,关于性能的一点小说明,因为 take 方法会处理范围较窄的输入,所以它的性能可以比奇技淫巧的索引快很多。
In [139]: arr = np.random.randn(10000, 5)
In [140]: indexer = np.arange(10000)
In [141]: random.shuffle(indexer)
In [142]: %timeit arr[indexer]
.....: %timeit arr.take(indexer, axis=0)
.....:
257 us +- 4.44 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
79.7 us +- 1.15 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
In [143]: ser = pd.Series(arr[:, 0])
In [144]: %timeit ser.iloc[indexer]
.....: %timeit ser.take(indexer)
.....:
144 us +- 3.69 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
129 us +- 2 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
Index types
我们在前几节中已经对 MultiIndex 进行了相当广泛的讨论。DatetimeIndex 和 PeriodIndex 的文档显示在 here 中,有关 TimedeltaIndex 的文档可在 here 中找到。
在以下小节中,我们将重点介绍一些其他索引类型。
CategoricalIndex
CategoricalIndex 是一种索引类型,很有用,因为它支持使用重复项进行索引。这是一个 Categorical 周围的容器,并允许高效地索引和存储具有大量重复元素的索引。
In [145]: from pandas.api.types import CategoricalDtype
In [146]: df = pd.DataFrame({"A": np.arange(6), "B": list("aabbca")})
In [147]: df["B"] = df["B"].astype(CategoricalDtype(list("cab")))
In [148]: df
Out[148]:
A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a
In [149]: df.dtypes
Out[149]:
A int64
B category
dtype: object
In [150]: df["B"].cat.categories
Out[150]: Index(['c', 'a', 'b'], dtype='object')
设置索引将创建 CategoricalIndex。
In [151]: df2 = df.set_index("B")
In [152]: df2.index
Out[152]: CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B')
使用 _getitem/.iloc/.loc_ 进行索引的工作方式类似于带有重复项的 Index。索引器必须属于该类别,否则操作会引发 KeyError。
In [153]: df2.loc["a"]
Out[153]:
A
B
a 0
a 1
a 5
索引后保留 CategoricalIndex:
In [154]: df2.loc["a"].index
Out[154]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B')
对索引进行排序将按类别顺序进行排序(回想一下,我们使用 CategoricalDtype(list('cab')) 创建了索引,因此排序的顺序为 cab)。
In [155]: df2.sort_index()
Out[155]:
A
B
c 4
a 0
a 1
a 5
b 2
b 3
对索引进行组合运算也将保留索引的性质。
In [156]: df2.groupby(level=0, observed=True).sum()
Out[156]:
A
B
c 4
a 6
b 5
In [157]: df2.groupby(level=0, observed=True).sum().index
Out[157]: CategoricalIndex(['c', 'a', 'b'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B')
重新索引运算会根据传递的索引器的类型返回一个结果索引。传递一个列表将返回一个普通的 Index;使用 Categorical 索引会返回 CategoricalIndex,根据传递的 Categorical 数据类型的类别进行索引。这样就能任意索引这些内容,即使使用不在类别中的值,类似于可以对任何熊猫索引进行重新索引的方式。
In [158]: df3 = pd.DataFrame(
.....: {"A": np.arange(3), "B": pd.Series(list("abc")).astype("category")}
.....: )
.....:
In [159]: df3 = df3.set_index("B")
In [160]: df3
Out[160]:
A
B
a 0
b 1
c 2
In [161]: df3.reindex(["a", "e"])
Out[161]:
A
B
a 0.0
e NaN
In [162]: df3.reindex(["a", "e"]).index
Out[162]: Index(['a', 'e'], dtype='object', name='B')
In [163]: df3.reindex(pd.Categorical(["a", "e"], categories=list("abe")))
Out[163]:
A
B
a 0.0
e NaN
In [164]: df3.reindex(pd.Categorical(["a", "e"], categories=list("abe"))).index
Out[164]: CategoricalIndex(['a', 'e'], categories=['a', 'b', 'e'], ordered=False, dtype='category', name='B')
警告
对 CategoricalIndex 进行重塑和比较运算时,必须有相同的类别,否则会引发 TypeError。
In [165]: df4 = pd.DataFrame({"A": np.arange(2), "B": list("ba")})
In [166]: df4["B"] = df4["B"].astype(CategoricalDtype(list("ab")))
In [167]: df4 = df4.set_index("B")
In [168]: df4.index
Out[168]: CategoricalIndex(['b', 'a'], categories=['a', 'b'], ordered=False, dtype='category', name='B')
In [169]: df5 = pd.DataFrame({"A": np.arange(2), "B": list("bc")})
In [170]: df5["B"] = df5["B"].astype(CategoricalDtype(list("bc")))
In [171]: df5 = df5.set_index("B")
In [172]: df5.index
Out[172]: CategoricalIndex(['b', 'c'], categories=['b', 'c'], ordered=False, dtype='category', name='B')
In [173]: pd.concat([df4, df5])
Out[173]:
A
B
b 0
a 1
b 0
c 1
RangeIndex
RangeIndex 是 Index 的子类,可为所有 DataFrame 和 Series 对象提供默认索引。RangeIndex 是 Index 的优化版本,可以表示单调的有序集合。这些都类似于 Python range types。RangeIndex 始终具有 int64 数据类型。
In [174]: idx = pd.RangeIndex(5)
In [175]: idx
Out[175]: RangeIndex(start=0, stop=5, step=1)
In [176]: ser = pd.Series([1, 2, 3])
In [177]: ser.index
Out[177]: RangeIndex(start=0, stop=3, step=1)
In [178]: df = pd.DataFrame([[1, 2], [3, 4]])
In [179]: df.index
Out[179]: RangeIndex(start=0, stop=2, step=1)
In [180]: df.columns
Out[180]: RangeIndex(start=0, stop=2, step=1)
RangeIndex 的行为类似于 int64 数据类型的 Index,并且对 RangeIndex 进行运算(其结果无法表示为 RangeIndex,但应具有整数数据类型)将被转换为带有 int64 的 Index。例如:
In [181]: idx[[0, 2]]
Out[181]: Index([0, 2], dtype='int64')
IntervalIndex
IntervalIndex 与其自身数据类型 IntervalDtype 及其 Interval 标量类型一起,在熊猫中为区间表示法提供了一流的支持。
IntervalIndex 可用于 Series 和 DataFrame 中作为索引。
In [182]: df = pd.DataFrame(
.....: {"A": [1, 2, 3, 4]}, index=pd.IntervalIndex.from_breaks([0, 1, 2, 3, 4])
.....: )
.....:
In [183]: df
Out[183]:
A
(0, 1] 1
(1, 2] 2
(2, 3] 3
(3, 4] 4
通过 .loc 在区间边缘进行基于标签的索引时,可以选择特定区间,效果符合预期。
In [184]: df.loc[2]
Out[184]:
A 2
Name: (1, 2], dtype: int64
In [185]: df.loc[[2, 3]]
Out[185]:
A
(1, 2] 2
(2, 3] 3
选择区间中包含的标签时,也将选择该区间。
In [186]: df.loc[2.5]
Out[186]:
A 3
Name: (2, 3], dtype: int64
In [187]: df.loc[[2.5, 3.5]]
Out[187]:
A
(2, 3] 3
(3, 4] 4
使用 Interval 进行选择时,只返回确切匹配项。
In [188]: df.loc[pd.Interval(1, 2)]
Out[188]:
A 2
Name: (1, 2], dtype: int64
如果要选择不在 IntervalIndex 中确切包含的 Interval,将会引发 KeyError。
In [189]: df.loc[pd.Interval(0.5, 2.5)]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[189], line 1
----> 1 df.loc[pd.Interval(0.5, 2.5)]
File ~/work/pandas/pandas/pandas/core/indexing.py:1191, in _LocationIndexer.__getitem__(self, key)
1189 maybe_callable = com.apply_if_callable(key, self.obj)
1190 maybe_callable = self._check_deprecated_callable_usage(key, maybe_callable)
-> 1191 return self._getitem_axis(maybe_callable, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexing.py:1431, in _LocIndexer._getitem_axis(self, key, axis)
1429 # fall thru to straight lookup
1430 self._validate_key(key, axis)
-> 1431 return self._get_label(key, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexing.py:1381, in _LocIndexer._get_label(self, label, axis)
1379 def _get_label(self, label, axis: AxisInt):
1380 # GH#5567 this will fail if the label is not present in the axis.
-> 1381 return self.obj.xs(label, axis=axis)
File ~/work/pandas/pandas/pandas/core/generic.py:4301, in NDFrame.xs(self, key, axis, level, drop_level)
4299 new_index = index[loc]
4300 else:
-> 4301 loc = index.get_loc(key)
4303 if isinstance(loc, np.ndarray):
4304 if loc.dtype == np.bool_:
File ~/work/pandas/pandas/pandas/core/indexes/interval.py:678, in IntervalIndex.get_loc(self, key)
676 matches = mask.sum()
677 if matches == 0:
--> 678 raise KeyError(key)
679 if matches == 1:
680 return mask.argmax()
KeyError: Interval(0.5, 2.5, closed='right')
可以选择所有与给定 Interval 重叠的 Intervals,可以使用 overlaps() 方法创建一个布尔索引器。
In [190]: idxr = df.index.overlaps(pd.Interval(0.5, 2.5))
In [191]: idxr
Out[191]: array([ True, True, True, False])
In [192]: df[idxr]
Out[192]:
A
(0, 1] 1
(1, 2] 2
(2, 3] 3
In [193]: c = pd.cut(range(4), bins=2)
In [194]: c
Out[194]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.0]]
Categories (2, interval[float64, right]): [(-0.003, 1.5] < (1.5, 3.0]]
In [195]: c.categories
Out[195]: IntervalIndex([(-0.003, 1.5], (1.5, 3.0]], dtype='interval[float64, right]')
cut() 也接受其 bins 参数的 IntervalIndex,这使得一个有用的熊猫惯用语能够得以实现。首先,使用一些数据和 bins(设置为固定数字)调用 cut() 来生成箱。然后,在后续调用 cut() 时将 .categories 的值作为 bins 参数传递,从而提供新数据,这些数据将分箱到相同的箱中。
In [196]: pd.cut([0, 3, 5, 1], bins=c.categories)
Out[196]:
[(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]]
Categories (2, interval[float64, right]): [(-0.003, 1.5] < (1.5, 3.0]]
任何超出所有箱的值都将被分配 NaN 值。
如果我们需要一个具有一定规则频率的区间,我们可以使用 interval_range() 函数来创建 IntervalIndex,并运用各种 start、end 和 periods 组合。对于 interval_range,默认的频率是数值区间的 1,以及日期时间区间中的日历日:
In [197]: pd.interval_range(start=0, end=5)
Out[197]: IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]')
In [198]: pd.interval_range(start=pd.Timestamp("2017-01-01"), periods=4)
Out[198]:
IntervalIndex([(2017-01-01 00:00:00, 2017-01-02 00:00:00],
(2017-01-02 00:00:00, 2017-01-03 00:00:00],
(2017-01-03 00:00:00, 2017-01-04 00:00:00],
(2017-01-04 00:00:00, 2017-01-05 00:00:00]],
dtype='interval[datetime64[ns], right]')
In [199]: pd.interval_range(end=pd.Timedelta("3 days"), periods=3)
Out[199]:
IntervalIndex([(0 days 00:00:00, 1 days 00:00:00],
(1 days 00:00:00, 2 days 00:00:00],
(2 days 00:00:00, 3 days 00:00:00]],
dtype='interval[timedelta64[ns], right]')
freq 参数可用于指定非默认频率,并可以在日期时间区间中使用各种 frequency aliases:
In [200]: pd.interval_range(start=0, periods=5, freq=1.5)
Out[200]: IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0], (6.0, 7.5]], dtype='interval[float64, right]')
In [201]: pd.interval_range(start=pd.Timestamp("2017-01-01"), periods=4, freq="W")
Out[201]:
IntervalIndex([(2017-01-01 00:00:00, 2017-01-08 00:00:00],
(2017-01-08 00:00:00, 2017-01-15 00:00:00],
(2017-01-15 00:00:00, 2017-01-22 00:00:00],
(2017-01-22 00:00:00, 2017-01-29 00:00:00]],
dtype='interval[datetime64[ns], right]')
In [202]: pd.interval_range(start=pd.Timedelta("0 days"), periods=3, freq="9h")
Out[202]:
IntervalIndex([(0 days 00:00:00, 0 days 09:00:00],
(0 days 09:00:00, 0 days 18:00:00],
(0 days 18:00:00, 1 days 03:00:00]],
dtype='interval[timedelta64[ns], right]')
此外,closed 参数可用于指定闭合在哪些侧面的区间。默认情况下,区间在右侧闭合。
In [203]: pd.interval_range(start=0, end=4, closed="both")
Out[203]: IntervalIndex([[0, 1], [1, 2], [2, 3], [3, 4]], dtype='interval[int64, both]')
In [204]: pd.interval_range(start=0, end=4, closed="neither")
Out[204]: IntervalIndex([(0, 1), (1, 2), (2, 3), (3, 4)], dtype='interval[int64, neither]')
指定 start、end 和 periods 将生成 start 到 end 的一系列以 periods 为间隔的区间,并包含 IntervalIndex 中的元素数量:
In [205]: pd.interval_range(start=0, end=6, periods=4)
Out[205]: IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]')
In [206]: pd.interval_range(pd.Timestamp("2018-01-01"), pd.Timestamp("2018-02-28"), periods=3)
Out[206]:
IntervalIndex([(2018-01-01 00:00:00, 2018-01-20 08:00:00],
(2018-01-20 08:00:00, 2018-02-08 16:00:00],
(2018-02-08 16:00:00, 2018-02-28 00:00:00]],
dtype='interval[datetime64[ns], right]')
Miscellaneous indexing FAQ
Integer indexing
使用整数轴标进行标签索引是一个棘手的话题。它已经在邮件列表和科学 Python 社区的各个成员之间进行了充分的讨论。在 pandas 中,我们的总体观点是标签比整数位置更重要。因此,对于整数轴索引,只能使用 .loc 之类的标准工具进行基于标签的索引。以下代码将生成异常:
In [207]: s = pd.Series(range(5))
In [208]: s[-1]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
File ~/work/pandas/pandas/pandas/core/indexes/range.py:413, in RangeIndex.get_loc(self, key)
412 try:
--> 413 return self._range.index(new_key)
414 except ValueError as err:
ValueError: -1 is not in range
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
Cell In[208], line 1
----> 1 s[-1]
File ~/work/pandas/pandas/pandas/core/series.py:1121, in Series.__getitem__(self, key)
1118 return self._values[key]
1120 elif key_is_scalar:
-> 1121 return self._get_value(key)
1123 # Convert generator to list before going through hashable part
1124 # (We will iterate through the generator there to check for slices)
1125 if is_iterator(key):
File ~/work/pandas/pandas/pandas/core/series.py:1237, in Series._get_value(self, label, takeable)
1234 return self._values[label]
1236 # Similar to Index.get_value, but we do not fall back to positional
-> 1237 loc = self.index.get_loc(label)
1239 if is_integer(loc):
1240 return self._values[loc]
File ~/work/pandas/pandas/pandas/core/indexes/range.py:415, in RangeIndex.get_loc(self, key)
413 return self._range.index(new_key)
414 except ValueError as err:
--> 415 raise KeyError(key) from err
416 if isinstance(key, Hashable):
417 raise KeyError(key)
KeyError: -1
In [209]: df = pd.DataFrame(np.random.randn(5, 4))
In [210]: df
Out[210]:
0 1 2 3
0 -0.435772 -1.188928 -0.808286 -0.284634
1 -1.815703 1.347213 -0.243487 0.514704
2 1.162969 -0.287725 -0.179734 0.993962
3 -0.212673 0.909872 -0.733333 -0.349893
4 0.456434 -0.306735 0.553396 0.166221
In [211]: df.loc[-2:]
Out[211]:
0 1 2 3
0 -0.435772 -1.188928 -0.808286 -0.284634
1 -1.815703 1.347213 -0.243487 0.514704
2 1.162969 -0.287725 -0.179734 0.993962
3 -0.212673 0.909872 -0.733333 -0.349893
4 0.456434 -0.306735 0.553396 0.166221
做出此项深思熟虑的决定是为了避免出现歧义和不易察觉的错误(许多用户报告在 API 更改为停止“回退”到基于位置的索引后发现错误)。
Non-monotonic indexes require exact matches
如果 Series 或 DataFrame 的索引是单调递增或递减的,那么基于标签的切片的边界可以超出索引范围,就像对 Python 普通 list 进行切片索引一样。可以借助 is_monotonic_increasing() 和 is_monotonic_decreasing() 属性来测试索引的单调性。
In [212]: df = pd.DataFrame(index=[2, 3, 3, 4, 5], columns=["data"], data=list(range(5)))
In [213]: df.index.is_monotonic_increasing
Out[213]: True
# no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4:
In [214]: df.loc[0:4, :]
Out[214]:
data
2 0
3 1
3 2
4 3
# slice is are outside the index, so empty DataFrame is returned
In [215]: df.loc[13:15, :]
Out[215]:
Empty DataFrame
Columns: [data]
Index: []
另一方面,如果索引不是单调的,则两个切片边界必须是索引的唯一成员。
In [216]: df = pd.DataFrame(index=[2, 3, 1, 4, 3, 5], columns=["data"], data=list(range(6)))
In [217]: df.index.is_monotonic_increasing
Out[217]: False
# OK because 2 and 4 are in the index
In [218]: df.loc[2:4, :]
Out[218]:
data
2 0
3 1
1 2
4 3
# 0 is not in the index
In [219]: df.loc[0:4, :]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key)
3804 try:
-> 3805 return self._engine.get_loc(casted_key)
3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:191, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:234, in pandas._libs.index.IndexEngine._get_loc_duplicates()
File index.pyx:242, in pandas._libs.index.IndexEngine._maybe_get_bool_indexer()
File index.pyx:134, in pandas._libs.index._unpack_bool_indexer()
KeyError: 0
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
Cell In[219], line 1
----> 1 df.loc[0:4, :]
File ~/work/pandas/pandas/pandas/core/indexing.py:1184, in _LocationIndexer.__getitem__(self, key)
1182 if self._is_scalar_access(key):
1183 return self.obj._get_value(*key, takeable=self._takeable)
-> 1184 return self._getitem_tuple(key)
1185 else:
1186 # we by definition only have the 0th axis
1187 axis = self.axis or 0
File ~/work/pandas/pandas/pandas/core/indexing.py:1377, in _LocIndexer._getitem_tuple(self, tup)
1374 if self._multi_take_opportunity(tup):
1375 return self._multi_take(tup)
-> 1377 return self._getitem_tuple_same_dim(tup)
File ~/work/pandas/pandas/pandas/core/indexing.py:1020, in _LocationIndexer._getitem_tuple_same_dim(self, tup)
1017 if com.is_null_slice(key):
1018 continue
-> 1020 retval = getattr(retval, self.name)._getitem_axis(key, axis=i)
1021 # We should never have retval.ndim < self.ndim, as that should
1022 # be handled by the _getitem_lowerdim call above.
1023 assert retval.ndim == self.ndim
File ~/work/pandas/pandas/pandas/core/indexing.py:1411, in _LocIndexer._getitem_axis(self, key, axis)
1409 if isinstance(key, slice):
1410 self._validate_key(key, axis)
-> 1411 return self._get_slice_axis(key, axis=axis)
1412 elif com.is_bool_indexer(key):
1413 return self._getbool_axis(key, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexing.py:1443, in _LocIndexer._get_slice_axis(self, slice_obj, axis)
1440 return obj.copy(deep=False)
1442 labels = obj._get_axis(axis)
-> 1443 indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step)
1445 if isinstance(indexer, slice):
1446 return self.obj._slice(indexer, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6662, in Index.slice_indexer(self, start, end, step)
6618 def slice_indexer(
6619 self,
6620 start: Hashable | None = None,
6621 end: Hashable | None = None,
6622 step: int | None = None,
6623 ) -> slice:
6624 """
6625 Compute the slice indexer for input labels and step.
6626
(...)
6660 slice(1, 3, None)
6661 """
-> 6662 start_slice, end_slice = self.slice_locs(start, end, step=step)
6664 # return a slice
6665 if not is_scalar(start_slice):
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6879, in Index.slice_locs(self, start, end, step)
6877 start_slice = None
6878 if start is not None:
-> 6879 start_slice = self.get_slice_bound(start, "left")
6880 if start_slice is None:
6881 start_slice = 0
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6804, in Index.get_slice_bound(self, label, side)
6801 return self._searchsorted_monotonic(label, side)
6802 except ValueError:
6803 # raise the original KeyError
-> 6804 raise err
6806 if isinstance(slc, np.ndarray):
6807 # get_loc may return a boolean array, which
6808 # is OK as long as they are representable by a slice.
6809 assert is_bool_dtype(slc.dtype)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6798, in Index.get_slice_bound(self, label, side)
6796 # we need to look up the label
6797 try:
-> 6798 slc = self.get_loc(label)
6799 except KeyError as err:
6800 try:
File ~/work/pandas/pandas/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key)
3807 if isinstance(casted_key, slice) or (
3808 isinstance(casted_key, abc.Iterable)
3809 and any(isinstance(x, slice) for x in casted_key)
3810 ):
3811 raise InvalidIndexError(key)
-> 3812 raise KeyError(key) from err
3813 except TypeError:
3814 # If we have a listlike key, _check_indexing_error will raise
3815 # InvalidIndexError. Otherwise we fall through and re-raise
3816 # the TypeError.
3817 self._check_indexing_error(key)
KeyError: 0
# 3 is not a unique label
In [220]: df.loc[2:3, :]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[220], line 1
----> 1 df.loc[2:3, :]
File ~/work/pandas/pandas/pandas/core/indexing.py:1184, in _LocationIndexer.__getitem__(self, key)
1182 if self._is_scalar_access(key):
1183 return self.obj._get_value(*key, takeable=self._takeable)
-> 1184 return self._getitem_tuple(key)
1185 else:
1186 # we by definition only have the 0th axis
1187 axis = self.axis or 0
File ~/work/pandas/pandas/pandas/core/indexing.py:1377, in _LocIndexer._getitem_tuple(self, tup)
1374 if self._multi_take_opportunity(tup):
1375 return self._multi_take(tup)
-> 1377 return self._getitem_tuple_same_dim(tup)
File ~/work/pandas/pandas/pandas/core/indexing.py:1020, in _LocationIndexer._getitem_tuple_same_dim(self, tup)
1017 if com.is_null_slice(key):
1018 continue
-> 1020 retval = getattr(retval, self.name)._getitem_axis(key, axis=i)
1021 # We should never have retval.ndim < self.ndim, as that should
1022 # be handled by the _getitem_lowerdim call above.
1023 assert retval.ndim == self.ndim
File ~/work/pandas/pandas/pandas/core/indexing.py:1411, in _LocIndexer._getitem_axis(self, key, axis)
1409 if isinstance(key, slice):
1410 self._validate_key(key, axis)
-> 1411 return self._get_slice_axis(key, axis=axis)
1412 elif com.is_bool_indexer(key):
1413 return self._getbool_axis(key, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexing.py:1443, in _LocIndexer._get_slice_axis(self, slice_obj, axis)
1440 return obj.copy(deep=False)
1442 labels = obj._get_axis(axis)
-> 1443 indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step)
1445 if isinstance(indexer, slice):
1446 return self.obj._slice(indexer, axis=axis)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6662, in Index.slice_indexer(self, start, end, step)
6618 def slice_indexer(
6619 self,
6620 start: Hashable | None = None,
6621 end: Hashable | None = None,
6622 step: int | None = None,
6623 ) -> slice:
6624 """
6625 Compute the slice indexer for input labels and step.
6626
(...)
6660 slice(1, 3, None)
6661 """
-> 6662 start_slice, end_slice = self.slice_locs(start, end, step=step)
6664 # return a slice
6665 if not is_scalar(start_slice):
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6885, in Index.slice_locs(self, start, end, step)
6883 end_slice = None
6884 if end is not None:
-> 6885 end_slice = self.get_slice_bound(end, "right")
6886 if end_slice is None:
6887 end_slice = len(self)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:6812, in Index.get_slice_bound(self, label, side)
6810 slc = lib.maybe_booleans_to_slice(slc.view("u1"))
6811 if isinstance(slc, np.ndarray):
-> 6812 raise KeyError(
6813 f"Cannot get {side} slice bound for non-unique "
6814 f"label: {repr(original_label)}"
6815 )
6817 if isinstance(slc, slice):
6818 if side == "left":
KeyError: 'Cannot get right slice bound for non-unique label: 3'
Index.is_monotonic_increasing 和 Index.is_monotonic_decreasing 只检查一个索引是否为弱单调。要检查严格单调性,你可以将其中之一与 is_unique() 属性结合使用。
In [221]: weakly_monotonic = pd.Index(["a", "b", "c", "c"])
In [222]: weakly_monotonic
Out[222]: Index(['a', 'b', 'c', 'c'], dtype='object')
In [223]: weakly_monotonic.is_monotonic_increasing
Out[223]: True
In [224]: weakly_monotonic.is_monotonic_increasing & weakly_monotonic.is_unique
Out[224]: False
Endpoints are inclusive
与切片端点不包括在内的标准 Python 序列切片相比,pandas 中基于标签的切片是包含的。其主要原因是通常无法轻松地确定索引中某个特定标签之后的“后继”或下一个元素。例如,考虑以下 Series:
In [225]: s = pd.Series(np.random.randn(6), index=list("abcdef"))
In [226]: s
Out[226]:
a -0.101684
b -0.734907
c -0.130121
d -0.476046
e 0.759104
f 0.213379
dtype: float64
假设我们希望从 c 切片到 e,使用整数可以这样实现:
In [227]: s[2:5]
Out[227]:
c -0.130121
d -0.476046
e 0.759104
dtype: float64
然而,如果你只有 c 和 e,则确定索引中的下一个元素会 somewhat 复杂。例如,以下操作无效:
In [228]: s.loc['c':'e' + 1]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[228], line 1
----> 1 s.loc['c':'e' + 1]
TypeError: can only concatenate str (not "int") to str
一个非常常见的用例是将时间序列限制为两个特定日期开始和结束。为了实现此目的,我们做出设计选择来使基于标签的切片包含两个端点:
In [229]: s.loc["c":"e"]
Out[229]:
c -0.130121
d -0.476046
e 0.759104
dtype: float64
这绝对是“实用性胜过纯粹性”之类的事,但如果你期望基于标签的切片完全按照标准 Python 整数切片的工作方式工作,则这是需要留意的。
Indexing potentially changes underlying Series dtype
不同的索引操作可能会更改 Series 的数据类型。
In [230]: series1 = pd.Series([1, 2, 3])
In [231]: series1.dtype
Out[231]: dtype('int64')
In [232]: res = series1.reindex([0, 4])
In [233]: res.dtype
Out[233]: dtype('float64')
In [234]: res
Out[234]:
0 1.0
4 NaN
dtype: float64
In [235]: series2 = pd.Series([True])
In [236]: series2.dtype
Out[236]: dtype('bool')
In [237]: res = series2.reindex_like(series1)
In [238]: res.dtype
Out[238]: dtype('O')
In [239]: res
Out[239]:
0 True
1 NaN
2 NaN
dtype: object
这是因为上面的(重新)索引操作会静默插入 NaNs,并且 dtype 会相应地更改。在使用 numpy ufuncs(例如 numpy.logical_and)时,这可能会造成一些问题。
请参阅 GH 2388 了解更多详细内容的讨论。