Pandas 中文参考指南
Essential basic functionality
这里我们讨论了熊猫数据结构中很多的基本功能。首先,让我们创建一些示例对象,就像我们在 10 minutes to pandas 部分中所做的那样:
In [1]: index = pd.date_range("1/1/2000", periods=8)
In [2]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=["A", "B", "C"])
Head and tail
In [4]: long_series = pd.Series(np.random.randn(1000))
In [5]: long_series.head()
Out[5]:
0 -1.157892
1 -1.344312
2 0.844885
3 1.075770
4 -0.109050
dtype: float64
In [6]: long_series.tail(3)
Out[6]:
997 -0.289388
998 -1.020544
999 0.589993
dtype: float64
Attributes and underlying data
pandas 对象有许多属性,使你可以访问元数据
-
shape:提供了对象的空间维度,与 ndarray 相符
-
* Axis labels*
-
Series: index (only axis)
-
DataFrame:index(行)和列
注意,可以安全地分配这些属性!
In [7]: df[:2]
Out[7]:
A B C
2000-01-01 -0.173215 0.119209 -1.044236
2000-01-02 -0.861849 -2.104569 -0.494929
In [8]: df.columns = [x.lower() for x in df.columns]
In [9]: df
Out[9]:
a b c
2000-01-01 -0.173215 0.119209 -1.044236
2000-01-02 -0.861849 -2.104569 -0.494929
2000-01-03 1.071804 0.721555 -0.706771
2000-01-04 -1.039575 0.271860 -0.424972
2000-01-05 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427
2000-01-07 0.524988 0.404705 0.577046
2000-01-08 -1.715002 -1.039268 -0.370647
pandas 对象 ( Index、 Series、 DataFrame)可以被认为是数组的容器,数组保存实际数据并执行实际计算。对于许多类型,基础数组是 numpy.ndarray。但是,pandas 和第三方库可以扩展 NumPy 的类型系统以添加对自定义数组的支持(参见 dtypes)。
In [10]: s.array
Out[10]:
<NumpyExtensionArray>
[ 0.4691122999071863, -0.2828633443286633, -1.5090585031735124,
-1.1356323710171934, 1.2121120250208506]
Length: 5, dtype: float64
In [11]: s.index.array
Out[11]:
<NumpyExtensionArray>
['a', 'b', 'c', 'd', 'e']
Length: 5, dtype: object
array 始终是 ExtensionArray。关于 ExtensionArray 是什么以及 pandas 为什么使用它们的确切详细信息超出了本介绍的范围。有关更多信息,请参见 dtypes。
如果你知道需要的是 NumPy 数组,请使用 to_numpy() 或 numpy.asarray()。
In [12]: s.to_numpy()
Out[12]: array([ 0.4691, -0.2829, -1.5091, -1.1356, 1.2121])
In [13]: np.asarray(s)
Out[13]: array([ 0.4691, -0.2829, -1.5091, -1.1356, 1.2121])
当 Series 或 Index 由 ExtensionArray 支持时, to_numpy() 可能涉及复制数据和强制转换值。有关更多信息,请参见 dtypes。
to_numpy() 对结果 numpy.ndarray 的 dtype 有一些控制。例如,考虑具有时区的日期时间。NumPy 没有任何表示支持时区的日期时间的 dtype,因此有两种可能的有用表示:
-
具有 Timestamp 对象的对象 dtype numpy.ndarray,每个对象都有正确的 tz
-
datetime64[ns] -dtype numpy.ndarray,其中值已转换为 UTC 且丢弃时区
dtype=object 可保留时区
In [14]: ser = pd.Series(pd.date_range("2000", periods=2, tz="CET"))
In [15]: ser.to_numpy(dtype=object)
Out[15]:
array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),
Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object)
或 dtype='datetime64[ns]' 可将其丢弃
In [16]: ser.to_numpy(dtype="datetime64[ns]")
Out[16]:
array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],
dtype='datetime64[ns]')
获取 DataFrame 内的“原始数据”可能会稍微复杂一点。当 DataFrame 仅对所有列具有单一数据类型时, DataFrame.to_numpy() 将返回基础数据:
In [17]: df.to_numpy()
Out[17]:
array([[-0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949],
[ 1.0718, 0.7216, -0.7068],
[-1.0396, 0.2719, -0.425 ],
[ 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784],
[ 0.525 , 0.4047, 0.577 ],
[-1.715 , -1.0393, -0.3706]])
如果 DataFrame 包含同质类型的数据,则实际可以在就地修改 ndarray,并且所做的更改将反映在数据结构中。对于异构数据(例如,DataFrame 的某些列并非都具有相同的 dtype),情况并非如此。与轴标签不同,values 属性本身无法被分配。
在使用异构数据时,结果 ndarray 的 dtype 将被选定为容纳所有涉及的数据。例如,如果涉及字符串,则结果将具有 object dtype。如果仅有浮点数和整数,则结果数组将具有 float dtype。 |
过去,pandas 建议使用 Series.values 或 DataFrame.values 从 Series 或 DataFrame 中提取数据。你仍会在旧代码库和网上找到这些内容的引用。今后,我们建议避免使用 .values 并使用 .array 或 .to_numpy()。.values 具有以下缺点:
-
当你的 Series 包含 extension type 时, Series.values 返回 NumPy 数组还是扩展数组尚不清楚。 Series.array 将始终返回 ExtensionArray,并且绝不会复制数据。 Series.to_numpy() 将始终返回 NumPy 数组,可能会复制/转换值。
-
当 DataFrame 包含多种数据类型时, DataFrame.values 可能涉及将数据复制到公共 dtype 并强制转换值,这是一个相对昂贵的操作。 DataFrame.to_numpy() 作为一种方法,明确表示返回的 NumPy 数组可能不是对 DataFrame 中相同数据的视图。
Accelerated operations
pandas 支持使用 numexpr 库和 bottleneck 库加速某些类型的二进制数字和布尔运算。
在处理大型数据集时,这些库特别有用,并可以实现大幅度的加速。numexpr 使用智能切块、缓存和多核。bottleneck 是一组专门的 cython 程序,在处理具有 nans 的数组时,该程序尤其快速。
这是一个示例(使用 100 列 x 100,000 行 DataFrames):
操作
0.11.0 (ms)
之前版本 (ms)
与之前版本的比例
df1 > df2
13.32
125.35
0.1063
df1 * df2
21.71
36.63
0.5928
df1 + df2
22.04
36.50
0.6039
强烈建议您安装这两个库。有关更多安装信息,请参阅小节 Recommended Dependencies 。
默认情况下,它们都可以使用,您可以通过设置选项控制它们:
pd.set_option("compute.use_bottleneck", False)
pd.set_option("compute.use_numexpr", False)
Flexible binary operations
使用 pandas 数据结构之间的二进制操作时,有两个关键点值得关注:
-
较高维度(例如 DataFrame)和低维度(例如 Series)对象之间的广播行为。
-
Missing data in computations.
我们将演示如何独立管理这些问题,尽管它们可同时处理。
Matching / broadcasting behavior
DataFrame 具有方法 add()、 sub()、 mul()、 div() 和相关函数 radd()、 rsub(),… 以执行二进制操作。对于广播行为,Series 输入是主要关注点。使用这些函数,您可以使用 axis 关键字根据索引或列进行匹配:
In [18]: df = pd.DataFrame(
....: {
....: "one": pd.Series(np.random.randn(3), index=["a", "b", "c"]),
....: "two": pd.Series(np.random.randn(4), index=["a", "b", "c", "d"]),
....: "three": pd.Series(np.random.randn(3), index=["b", "c", "d"]),
....: }
....: )
....:
In [19]: df
Out[19]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [20]: row = df.iloc[1]
In [21]: column = df["two"]
In [22]: df.sub(row, axis="columns")
Out[22]:
one two three
a 1.051928 -0.139606 NaN
b 0.000000 0.000000 0.000000
c 0.352192 -0.433754 1.277825
d NaN -1.632779 -0.562782
In [23]: df.sub(row, axis=1)
Out[23]:
one two three
a 1.051928 -0.139606 NaN
b 0.000000 0.000000 0.000000
c 0.352192 -0.433754 1.277825
d NaN -1.632779 -0.562782
In [24]: df.sub(column, axis="index")
Out[24]:
one two three
a -0.377535 0.0 NaN
b -1.569069 0.0 -1.962513
c -0.783123 0.0 -0.250933
d NaN 0.0 -0.892516
In [25]: df.sub(column, axis=0)
Out[25]:
one two three
a -0.377535 0.0 NaN
b -1.569069 0.0 -1.962513
c -0.783123 0.0 -0.250933
d NaN 0.0 -0.892516
此外,您可以将 MultiIndexed DataFrame 的级别与 Series 对齐。
In [26]: dfmi = df.copy()
In [27]: dfmi.index = pd.MultiIndex.from_tuples(
....: [(1, "a"), (1, "b"), (1, "c"), (2, "a")], names=["first", "second"]
....: )
....:
In [28]: dfmi.sub(column, axis=0, level="second")
Out[28]:
one two three
first second
1 a -0.377535 0.000000 NaN
b -1.569069 0.000000 -1.962513
c -0.783123 0.000000 -0.250933
2 a NaN -1.493173 -2.385688
Series 和 Index 还支持 divmod() 内置函数。此函数采用除以正整数和模运算,同时返回与左侧相同的类型。例如:
In [29]: s = pd.Series(np.arange(10))
In [30]: s
Out[30]:
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
dtype: int64
In [31]: div, rem = divmod(s, 3)
In [32]: div
Out[32]:
0 0
1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 2
9 3
dtype: int64
In [33]: rem
Out[33]:
0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2
9 0
dtype: int64
In [34]: idx = pd.Index(np.arange(10))
In [35]: idx
Out[35]: Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
In [36]: div, rem = divmod(idx, 3)
In [37]: div
Out[37]: Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')
In [38]: rem
Out[38]: Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')
我们还可以进行逐元素 divmod():
In [39]: div, rem = divmod(s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6])
In [40]: div
Out[40]:
0 0
1 0
2 0
3 1
4 1
5 1
6 1
7 1
8 1
9 1
dtype: int64
In [41]: rem
Out[41]:
0 0
1 1
2 2
3 0
4 0
5 1
6 1
7 2
8 2
9 3
dtype: int64
Missing data / operations with fill values
在 Series 和 DataFrame 中,算术函数具有输入 fill_value 的选项,即当某个位置最多有一个值缺失时需要代入的值。例如,当添加两个 DataFrame 对象时,您可能希望将 NaN 视为 0(除非这两个 DataFrame 都缺失该值),在这种情况下,结果将为 NaN(如果您希望,您稍后可以使用 fillna 将 NaN 替换为其他一些值)。
In [42]: df2 = df.copy()
In [43]: df2.loc["a", "three"] = 1.0
In [44]: df
Out[44]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [45]: df2
Out[45]:
one two three
a 1.394981 1.772517 1.000000
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [46]: df + df2
Out[46]:
one two three
a 2.789963 3.545034 NaN
b 0.686107 3.824246 -0.100780
c 1.390491 2.956737 2.454870
d NaN 0.558688 -1.226343
In [47]: df.add(df2, fill_value=0)
Out[47]:
one two three
a 2.789963 3.545034 1.000000
b 0.686107 3.824246 -0.100780
c 1.390491 2.956737 2.454870
d NaN 0.558688 -1.226343
Flexible comparisons
Series 和 DataFrame 具有二进制比较方法 eq、ne、lt、gt、le 和 ge,其行为类似于上面描述的二进制算术操作:
In [48]: df.gt(df2)
Out[48]:
one two three
a False False False
b False False False
c False False False
d False False False
In [49]: df2.ne(df)
Out[49]:
one two three
a False False True
b False False False
c False False False
d True False False
这些操作会生成一个熊猫对象,其类型与左手边的输入对象相同,且属于 bool 数据类型。这些 boolean 对象可用于索引操作,请参阅 Boolean indexing 中的章节。
Boolean reductions
In [50]: (df > 0).all()
Out[50]:
one False
two True
three False
dtype: bool
In [51]: (df > 0).any()
Out[51]:
one True
two True
three True
dtype: bool
您可以约简为最终的布尔值。
In [52]: (df > 0).any().any()
Out[52]: True
您可以通过 empty 属性来测试熊猫对象是否为空。
In [53]: df.empty
Out[53]: False
In [54]: pd.DataFrame(columns=list("ABC")).empty
Out[54]: True
警告
断言熊猫对象的真值时会引发错误,因为空值或值的测试是模棱两可的。
In [55]: if df:
....: print(True)
....:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-55-318d08b2571a> in ?()
----> 1 if df:
2 print(True)
~/work/pandas/pandas/pandas/core/generic.py in ?(self)
1575 @final
1576 def __nonzero__(self) -> NoReturn:
-> 1577 raise ValueError(
1578 f"The truth value of a {type(self).__name__} is ambiguous. "
1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1580 )
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
In [56]: df and df2
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-56-b241b64bb471> in ?()
----> 1 df and df2
~/work/pandas/pandas/pandas/core/generic.py in ?(self)
1575 @final
1576 def __nonzero__(self) -> NoReturn:
-> 1577 raise ValueError(
1578 f"The truth value of a {type(self).__name__} is ambiguous. "
1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1580 )
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
请参阅 gotchas,了解更详细的讨论。
Comparing if objects are equivalent
您可能常常会发现有多种方法可以计算相同的结果。作为一个简单的示例,请考虑 df + df 和 df * 2。为了测试这两种计算是否会产生相同的结果,在使用上面显示的工具的情况下,您可能会考虑使用 (df + df == df * 2).all()。但事实上,此表达式为 False:
In [57]: df + df == df * 2
Out[57]:
one two three
a True True False
b True True True
c True True True
d False True True
In [58]: (df + df == df * 2).all()
Out[58]:
one False
two True
three False
dtype: bool
请注意,布尔 DataFrame df + df == df * 2 包含一些 False 值!这是因为 NaN 无法与相等的值进行比较:
In [59]: np.nan == np.nan
Out[59]: False
因此,NDFrame(例如 Series 和 DataFrame)具有一个 equals() 方法,用于测试相等性,方法是将对应位置的 NaN 视作相等的。
In [60]: (df + df).equals(df * 2)
Out[60]: True
请注意,Series 或 DataFrame 索引的顺序必须相同,相等性才为 True:
In [61]: df1 = pd.DataFrame({"col": ["foo", 0, np.nan]})
In [62]: df2 = pd.DataFrame({"col": [np.nan, 0, "foo"]}, index=[2, 1, 0])
In [63]: df1.equals(df2)
Out[63]: False
In [64]: df1.equals(df2.sort_index())
Out[64]: True
Comparing array-like objects
在比较熊猫数据结构和标量值时,您可以方便地执行逐元素比较:
In [65]: pd.Series(["foo", "bar", "baz"]) == "foo"
Out[65]:
0 True
1 False
2 False
dtype: bool
In [66]: pd.Index(["foo", "bar", "baz"]) == "foo"
Out[66]: array([ True, False, False])
pandas 还处理长度相同的不同类数组对象之间的逐元素比较:
In [67]: pd.Series(["foo", "bar", "baz"]) == pd.Index(["foo", "bar", "qux"])
Out[67]:
0 True
1 True
2 False
dtype: bool
In [68]: pd.Series(["foo", "bar", "baz"]) == np.array(["foo", "bar", "qux"])
Out[68]:
0 True
1 True
2 False
dtype: bool
尝试比较长度不同的 Index 或 Series 对象时,会引发 ValueError:
In [69]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[69], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
72 return NotImplemented
74 other = item_from_zerodim(other)
---> 76 return method(self, other)
File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
38 @unpack_zerodim_and_defer("__eq__")
39 def __eq__(self, other):
---> 40 return self._cmp_method(other, operator.eq)
File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
6111 res_name = ops.get_op_result_name(self, other)
6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114 raise ValueError("Can only compare identically-labeled Series objects")
6116 lvalues = self._values
6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)
ValueError: Can only compare identically-labeled Series objects
In [70]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[70], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
72 return NotImplemented
74 other = item_from_zerodim(other)
---> 76 return method(self, other)
File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
38 @unpack_zerodim_and_defer("__eq__")
39 def __eq__(self, other):
---> 40 return self._cmp_method(other, operator.eq)
File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
6111 res_name = ops.get_op_result_name(self, other)
6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114 raise ValueError("Can only compare identically-labeled Series objects")
6116 lvalues = self._values
6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)
ValueError: Can only compare identically-labeled Series objects
Combining overlapping data sets
偶尔会出现的问题是,在两个相似的数据集中,将一个数据集中某一值作为优先项,而另一个数据集中某一值不是优先项。一个示例是,两个数据序列表示特定经济指标,其中一个被认为是“质量更高的”。但是,质量较差的序列在历史上的时间跨度可能更长,或者数据覆盖范围更全面。因此,我们要合并两个 DataFrame 对象,其中一个 DataFrame 中的缺失值通过有相同标签的其他 DataFrame 中的值有条件地填补。实现此操作的函数是 combine_first(),我们对其进行了说明:
In [71]: df1 = pd.DataFrame(
....: {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
....: )
....:
In [72]: df2 = pd.DataFrame(
....: {
....: "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
....: "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
....: }
....: )
....:
In [73]: df1
Out[73]:
A B
0 1.0 NaN
1 NaN 2.0
2 3.0 3.0
3 5.0 NaN
4 NaN 6.0
In [74]: df2
Out[74]:
A B
0 5.0 NaN
1 2.0 NaN
2 4.0 3.0
3 NaN 4.0
4 3.0 6.0
5 7.0 8.0
In [75]: df1.combine_first(df2)
Out[75]:
A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
General DataFrame combine
上面的 combine_first() 方法调用更通用的 DataFrame.combine()。此方法获取另一个 DataFrame 和组合器函数,对齐输入 DataFrame,然后将组合器函数成对的 Series(即名称相同的列)传递过去。
因此,例如,要复制上述 combine_first():
In [76]: def combiner(x, y):
....: return np.where(pd.isna(x), y, x)
....:
In [77]: df1.combine(df2, combiner)
Out[77]:
A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
Descriptive statistics
有大量方法可用于计算描述性统计和其他 Series、 DataFrame 上相关的运算。其中大部分是聚合(因此产生较低维度的结果),例如 sum()、 mean() 和 quantile(),但其中一些(例如 cumsum() 和 cumprod())会生成相同大小的对象。一般来说,这些方法采用一个轴参数,就像 ndarray.{sum, std, …} 那样,但是可以使用名称或整数来指定轴:
-
Series:不需要轴参数
-
DataFrame:“索引”(axis=0,默认值)、“列”(axis=1)
例如:
In [78]: df
Out[78]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [79]: df.mean(0)
Out[79]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [80]: df.mean(1)
Out[80]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
所有上述方法都有 skipna 选项来标记是否排除丢失数据(默认情况下为 True):
In [81]: df.sum(0, skipna=False)
Out[81]:
one NaN
two 5.442353
three NaN
dtype: float64
In [82]: df.sum(axis=1, skipna=True)
Out[82]:
a 3.167498
b 2.204786
c 3.401050
d -0.333828
dtype: float64
通过结合广播 / 算术行为,人们可以非常简洁地描述各种统计程序,例如标准化(将数据渲染为均值为 0、标准差为 1):
In [83]: ts_stand = (df - df.mean()) / df.std()
In [84]: ts_stand.std()
Out[84]:
one 1.0
two 1.0
three 1.0
dtype: float64
In [85]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
In [86]: xs_stand.std(1)
Out[86]:
a 1.0
b 1.0
c 1.0
d 1.0
dtype: float64
请注意, cumsum() 和 cumprod() 等方法保留了 NaN 值的位置。这与 expanding() 和 rolling() 有些不同,因为 NaN 行为还由 min_periods 参数决定。
In [87]: df.cumsum()
Out[87]:
one two three
a 1.394981 1.772517 NaN
b 1.738035 3.684640 -0.050390
c 2.433281 5.163008 1.177045
d NaN 5.442353 0.563873
以下是常见函数的快速参考摘要表。每个函数还采用一个可选的 level 参数,该参数仅在对象具有 hierarchical index 时适用。
函数
说明
count
非 NA 观测值的数量
sum
值的总和
mean
值的平均值
median
值的算术中位数
min
最小值
max
最大值
mode
众数
abs
绝对值
prod
值乘积
std
贝塞尔校正过的样本标准差
var
无偏差方差
sem
均值的标准误
skew
样本偏度(三阶矩)
kurt
样本峰度(四阶矩)
quantile
样本分位数(值为%)
cumsum
累积和
cumprod
累积乘积
cummax
累积最大值
cummin
累积最小值
请注意,碰巧有一些 NumPy 方法(如 mean、std 和 sum)在默认情况下会排除 Series 输入中的 NA 值:
In [88]: np.mean(df["one"])
Out[88]: 0.8110935116651192
In [89]: np.mean(df["one"].to_numpy())
Out[89]: nan
Series.nunique() 将返回 Series 中唯一非 NA 值的数量:
In [90]: series = pd.Series(np.random.randn(500))
In [91]: series[20:500] = np.nan
In [92]: series[10:20] = 5
In [93]: series.nunique()
Out[93]: 11
Summarizing data: describe
有一个便捷的 describe() 函数,可计算有关 Series 或 DataFrame 列的各种汇总统计信息(当然排除了 NA 值):
In [94]: series = pd.Series(np.random.randn(1000))
In [95]: series[::2] = np.nan
In [96]: series.describe()
Out[96]:
count 500.000000
mean -0.021292
std 1.015906
min -2.683763
25% -0.699070
50% -0.069718
75% 0.714483
max 3.160915
dtype: float64
In [97]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [98]: frame.iloc[::2] = np.nan
In [99]: frame.describe()
Out[99]:
a b c d e
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean 0.033387 0.030045 -0.043719 -0.051686 0.005979
std 1.017152 0.978743 1.025270 1.015988 1.006695
min -3.000951 -2.637901 -3.303099 -3.159200 -3.188821
25% -0.647623 -0.576449 -0.712369 -0.691338 -0.691115
50% 0.047578 -0.021499 -0.023888 -0.032652 -0.025363
75% 0.729907 0.775880 0.618896 0.670047 0.649748
max 2.740139 2.752332 3.004229 2.728702 3.240991
您可以选择要包含在输出中的特定百分位数:
In [100]: series.describe(percentiles=[0.05, 0.25, 0.75, 0.95])
Out[100]:
count 500.000000
mean -0.021292
std 1.015906
min -2.683763
5% -1.645423
25% -0.699070
50% -0.069718
75% 0.714483
95% 1.711409
max 3.160915
dtype: float64
默认情况下,始终包含中位数。
对于非数值 Series 对象, describe() 将对唯一值的数量和最常出现的 value 提供简单的汇总:
In [101]: s = pd.Series(["a", "a", "b", "b", "a", "a", np.nan, "c", "d", "a"])
In [102]: s.describe()
Out[102]:
count 9
unique 4
top a
freq 5
dtype: object
请注意,对于混合类型 DataFrame 对象, describe() 将限制汇总,仅包括数值列,或在没有数值列的情况下,仅包括分类列:
In [103]: frame = pd.DataFrame({"a": ["Yes", "Yes", "No", "No"], "b": range(4)})
In [104]: frame.describe()
Out[104]:
b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
可以通过将类型列表作为 include/exclude 参数提供来控制此行为。还可使用特殊值 all:
In [105]: frame.describe(include=["object"])
Out[105]:
a
count 4
unique 2
top Yes
freq 2
In [106]: frame.describe(include=["number"])
Out[106]:
b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
In [107]: frame.describe(include="all")
Out[107]:
a b
count 4 4.000000
unique 2 NaN
top Yes NaN
freq 2 NaN
mean NaN 1.500000
std NaN 1.290994
min NaN 0.000000
25% NaN 0.750000
50% NaN 1.500000
75% NaN 2.250000
max NaN 3.000000
该特性依赖于 select_dtypes。有关可接受输入的详细信息,请参阅此处。
Index of min/max values
In [108]: s1 = pd.Series(np.random.randn(5))
In [109]: s1
Out[109]:
0 1.118076
1 -0.352051
2 -1.242883
3 -1.277155
4 -0.641184
dtype: float64
In [110]: s1.idxmin(), s1.idxmax()
Out[110]: (3, 0)
In [111]: df1 = pd.DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])
In [112]: df1
Out[112]:
A B C
0 -0.327863 -0.946180 -0.137570
1 -0.186235 -0.257213 -0.486567
2 -0.507027 -0.871259 -0.111110
3 2.000339 -2.430505 0.089759
4 -0.321434 -0.033695 0.096271
In [113]: df1.idxmin(axis=0)
Out[113]:
A 2
B 3
C 1
dtype: int64
In [114]: df1.idxmax(axis=1)
Out[114]:
0 C
1 A
2 C
3 A
4 C
dtype: object
In [115]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=["A"], index=list("edcba"))
In [116]: df3
Out[116]:
A
e 2.0
d 1.0
c 1.0
b 3.0
a NaN
In [117]: df3["A"].idxmin()
Out[117]: 'd'
idxmin 和 idxmax 在 NumPy 中称为 argmin 和 argmax。 |
Value counts (histogramming) / mode
value_counts() Series 方法计算一维值数组的直方图。它还可用作常规数组上的函数:
In [118]: data = np.random.randint(0, 7, size=50)
In [119]: data
Out[119]:
array([6, 6, 2, 3, 5, 3, 2, 5, 4, 5, 4, 3, 4, 5, 0, 2, 0, 4, 2, 0, 3, 2,
2, 5, 6, 5, 3, 4, 6, 4, 3, 5, 6, 4, 3, 6, 2, 6, 6, 2, 3, 4, 2, 1,
6, 2, 6, 1, 5, 4])
In [120]: s = pd.Series(data)
In [121]: s.value_counts()
Out[121]:
6 10
2 10
4 9
3 8
5 8
0 3
1 2
Name: count, dtype: int64
value_counts() 方法可用于统计多列中的组合。默认情况下使用所有列,但可以使用 subset 参数选择子集。
In [122]: data = {"a": [1, 2, 3, 4], "b": ["x", "x", "y", "y"]}
In [123]: frame = pd.DataFrame(data)
In [124]: frame.value_counts()
Out[124]:
a b
1 x 1
2 x 1
3 y 1
4 y 1
Name: count, dtype: int64
类似地,您可以获取 Series 或 DataFrame 中的 value 的最常出现值(即模式):
In [125]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])
In [126]: s5.mode()
Out[126]:
0 3
1 7
dtype: int64
In [127]: df5 = pd.DataFrame(
.....: {
.....: "A": np.random.randint(0, 7, size=50),
.....: "B": np.random.randint(-10, 15, size=50),
.....: }
.....: )
.....:
In [128]: df5.mode()
Out[128]:
A B
0 1.0 -9
1 NaN 10
2 NaN 13
Discretization and quantiling
In [129]: arr = np.random.randn(20)
In [130]: factor = pd.cut(arr, 4)
In [131]: factor
Out[131]:
[(-0.251, 0.464], (-0.968, -0.251], (0.464, 1.179], (-0.251, 0.464], (-0.968, -0.251], ..., (-0.251, 0.464], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251]]
Length: 20
Categories (4, interval[float64, right]): [(-0.968, -0.251] < (-0.251, 0.464] < (0.464, 1.179] <
(1.179, 1.893]]
In [132]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])
In [133]: factor
Out[133]:
[(0, 1], (-1, 0], (0, 1], (0, 1], (-1, 0], ..., (-1, 0], (-1, 0], (-1, 0], (-1, 0], (-1, 0]]
Length: 20
Categories (4, interval[int64, right]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]
qcut() 计算样本分位数。例如,我们可以按照相等大小的分位数对一些正态分布的数据进行切片,如下所示:
In [134]: arr = np.random.randn(30)
In [135]: factor = pd.qcut(arr, [0, 0.25, 0.5, 0.75, 1])
In [136]: factor
Out[136]:
[(0.569, 1.184], (-2.278, -0.301], (-2.278, -0.301], (0.569, 1.184], (0.569, 1.184], ..., (-0.301, 0.569], (1.184, 2.346], (1.184, 2.346], (-0.301, 0.569], (-2.278, -0.301]]
Length: 30
Categories (4, interval[float64, right]): [(-2.278, -0.301] < (-0.301, 0.569] < (0.569, 1.184] <
(1.184, 2.346]]
我们还可以传递无限值来定义箱:
In [137]: arr = np.random.randn(20)
In [138]: factor = pd.cut(arr, [-np.inf, 0, np.inf])
In [139]: factor
Out[139]:
[(-inf, 0.0], (0.0, inf], (0.0, inf], (-inf, 0.0], (-inf, 0.0], ..., (-inf, 0.0], (-inf, 0.0], (-inf, 0.0], (0.0, inf], (0.0, inf]]
Length: 20
Categories (2, interval[float64, right]): [(-inf, 0.0] < (0.0, inf]]
Function application
要将你自己的或另一个库的函数应用到熊猫对象,你应该了解以下三种方法。使用哪种方法取决于你的函数是否要对整个 DataFrame 或 Series、逐行或逐列,或逐元素进行操作。
Tablewise function application
可以将 DataFrames 和 Series 传递到函数中。但是,如果需要在链中调用函数,请考虑使用 pipe() 方法。
首先进行一些设置:
In [140]: def extract_city_name(df):
.....: """
.....: Chicago, IL -> Chicago for city_name column
.....: """
.....: df["city_name"] = df["city_and_code"].str.split(",").str.get(0)
.....: return df
.....:
In [141]: def add_country_name(df, country_name=None):
.....: """
.....: Chicago -> Chicago-US for city_name column
.....: """
.....: col = "city_name"
.....: df["city_and_country"] = df[col] + country_name
.....: return df
.....:
In [142]: df_p = pd.DataFrame({"city_and_code": ["Chicago, IL"]})
extract_city_name 和 add_country_name 是以 DataFrames 为输入和输出的函数。
现在比较以下内容:
In [143]: add_country_name(extract_city_name(df_p), country_name="US")
Out[143]:
city_and_code city_name city_and_country
0 Chicago, IL Chicago ChicagoUS
等价于:
In [144]: df_p.pipe(extract_city_name).pipe(add_country_name, country_name="US")
Out[144]:
city_and_code city_name city_and_country
0 Chicago, IL Chicago ChicagoUS
熊猫鼓励第二种风格,它被称为方法链。pipe 使得你可以在方法链中轻松地使用你自己的或另一个库的函数,以及熊猫的方法。
在上面的示例中,函数 extract_city_name 和 add_country_name 各自预期 DataFrame 作为第一个位置参数。如果你希望应用的函数将其数据作为第二个参数,该怎么办?在这种情况下,向 pipe 提供 (callable, data_keyword) 的元组。.pipe 将 DataFrame 路由到元组中指定的参数。
例如,我们可以使用 statsmodels 拟合回归。他们的 API 首先预期一个公式,然后预期 DataFrame 作为第二个参数,data。我们将函数、关键字对 (sm.ols, 'data') 传递到 pipe:
In [147]: import statsmodels.formula.api as sm
In [148]: bb = pd.read_csv("data/baseball.csv", index_col="id")
In [149]: (
.....: bb.query("h > 0")
.....: .assign(ln_h=lambda df: np.log(df.h))
.....: .pipe((sm.ols, "data"), "hr ~ ln_h + year + g + C(lg)")
.....: .fit()
.....: .summary()
.....: )
.....:
Out[149]:
<class 'statsmodels.iolib.summary.Summary'>
"""
OLS Regression Results
==============================================================================
Dep. Variable: hr R-squared: 0.685
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 34.28
Date: Tue, 22 Nov 2022 Prob (F-statistic): 3.48e-15
Time: 05:34:17 Log-Likelihood: -205.92
No. Observations: 68 AIC: 421.8
Df Residuals: 63 BIC: 432.9
Df Model: 4
Covariance Type: nonrobust
===============================================================================
coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------------
Intercept -8484.7720 4664.146 -1.819 0.074 -1.78e+04 835.780
C(lg)[T.NL] -2.2736 1.325 -1.716 0.091 -4.922 0.375
ln_h -1.3542 0.875 -1.547 0.127 -3.103 0.395
year 4.2277 2.324 1.819 0.074 -0.417 8.872
g 0.1841 0.029 6.258 0.000 0.125 0.243
==============================================================================
Omnibus: 10.875 Durbin-Watson: 1.999
Prob(Omnibus): 0.004 Jarque-Bera (JB): 17.298
Skew: 0.537 Prob(JB): 0.000175
Kurtosis: 5.225 Cond. No. 1.49e+07
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.49e+07. This might indicate that there are
strong multicollinearity or other numerical problems.
"""
Row or column-wise function application
可以使用 apply() 方法对 DataFrame 的轴应用任意函数,该方法与描述性统计方法一样,采用可选的 axis 参数:
In [145]: df.apply(lambda x: np.mean(x))
Out[145]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [146]: df.apply(lambda x: np.mean(x), axis=1)
Out[146]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
In [147]: df.apply(lambda x: x.max() - x.min())
Out[147]:
one 1.051928
two 1.632779
three 1.840607
dtype: float64
In [148]: df.apply(np.cumsum)
Out[148]:
one two three
a 1.394981 1.772517 NaN
b 1.738035 3.684640 -0.050390
c 2.433281 5.163008 1.177045
d NaN 5.442353 0.563873
In [149]: df.apply(np.exp)
Out[149]:
one two three
a 4.034899 5.885648 NaN
b 1.409244 6.767440 0.950858
c 2.004201 4.385785 3.412466
d NaN 1.322262 0.541630
apply() 方法还将在字符串方法名上进行调度。
In [150]: df.apply("mean")
Out[150]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [151]: df.apply("mean", axis=1)
Out[151]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
传递给 apply() 的函数的返回类型会影响默认行为下 DataFrame.apply 的最终输出的类型:
-
如果应用的函数返回 Series,则最终输出为 DataFrame。列与应用的函数返回的 Series 的索引匹配。
-
如果应用函数返回任何其他类型,最终输出将是 Series。
可以使用 result_type 覆盖此默认行为,它接受三个选项:reduce、broadcast 和 expand。它们将确定类似列表的返回值如何在 DataFrame 中展开(或不展开)。
将 apply() 与一些 cleverness 结合使用,可以用来解决有关数据集的许多问题。例如,假设我们想要提取每一列最大值所在日期:
In [152]: tsdf = pd.DataFrame(
.....: np.random.randn(1000, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=1000),
.....: )
.....:
In [153]: tsdf.apply(lambda x: x.idxmax())
Out[153]:
A 2000-08-06
B 2001-01-18
C 2001-07-18
dtype: datetime64[ns]
您还可以将其他参数和关键字参数传递到 apply() 方法。
In [154]: def subtract_and_divide(x, sub, divide=1):
.....: return (x - sub) / divide
.....:
In [155]: df_udf = pd.DataFrame(np.ones((2, 2)))
In [156]: df_udf.apply(subtract_and_divide, args=(5,), divide=3)
Out[156]:
0 1
0 -1.333333 -1.333333
1 -1.333333 -1.333333
另一个有用的特性是能够传递系列方法来对每一列或行执行某些系列操作:
In [157]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [158]: tsdf.iloc[3:7] = np.nan
In [159]: tsdf
Out[159]:
A B C
2000-01-01 -0.158131 -0.232466 0.321604
2000-01-02 -1.810340 -3.105758 0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.653602 0.178875 1.008298
2000-01-09 1.007996 0.462824 0.254472
2000-01-10 0.307473 0.600337 1.643950
In [160]: tsdf.apply(pd.Series.interpolate)
Out[160]:
A B C
2000-01-01 -0.158131 -0.232466 0.321604
2000-01-02 -1.810340 -3.105758 0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 -1.098598 -0.889659 0.092225
2000-01-05 -0.987349 -0.622526 0.321243
2000-01-06 -0.876100 -0.355392 0.550262
2000-01-07 -0.764851 -0.088259 0.779280
2000-01-08 -0.653602 0.178875 1.008298
2000-01-09 1.007996 0.462824 0.254472
2000-01-10 0.307473 0.600337 1.643950
最后, apply() 接受一个默认为 False 的 raw 参数,它会在应用函数之前将每一行或列转换为 Series。当设置为 True 时,传递的函数将接收一个 ndarray 对象,如果您不需要索引功能,那么将具有积极的性能影响。
Aggregation API
聚合 API 允许以一种简洁的方式表达多个聚合操作。此 API 在 pandas 对象中是类似的,请参见 groupby API、 window API 和 resample API。聚合的入口点是 DataFrame.aggregate() 或别名 DataFrame.agg()。
我们将使用上面类似的起始框架:
In [161]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [162]: tsdf.iloc[3:7] = np.nan
In [163]: tsdf
Out[163]:
A B C
2000-01-01 1.257606 1.004194 0.167574
2000-01-02 -0.749892 0.288112 -0.757304
2000-01-03 -0.207550 -0.298599 0.116018
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.814347 -0.257623 0.869226
2000-01-09 -0.250663 -1.206601 0.896839
2000-01-10 2.169758 -1.333363 0.283157
使用一个函数等效于 apply()。您还可以将命名方法作为字符串传递。它们将返回一个 Series 的聚合输出:
In [164]: tsdf.agg(lambda x: np.sum(x))
Out[164]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
In [165]: tsdf.agg("sum")
Out[165]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
# these are equivalent to a ``.sum()`` because we are aggregating
# on a single function
In [166]: tsdf.sum()
Out[166]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
在 Series 上进行单个聚合将返回一个标量值:
In [167]: tsdf["A"].agg("sum")
Out[167]: 3.033606102414146
您可以将多个聚合参数作为列表传递。传递的每个函数的结果将是 DataFrame 中的一行。这些自然是从聚合函数中命名的。
In [168]: tsdf.agg(["sum"])
Out[168]:
A B C
sum 3.033606 -1.803879 1.57551
多个函数会产生多行:
In [169]: tsdf.agg(["sum", "mean"])
Out[169]:
A B C
sum 3.033606 -1.803879 1.575510
mean 0.505601 -0.300647 0.262585
在 Series 上,多个函数返回一个 Series,由函数名称索引:
In [170]: tsdf["A"].agg(["sum", "mean"])
Out[170]:
sum 3.033606
mean 0.505601
Name: A, dtype: float64
传递一个 lambda 函数将产生一个名称为 row 的 <lambda>:
In [171]: tsdf["A"].agg(["sum", lambda x: x.mean()])
Out[171]:
sum 3.033606
<lambda> 0.505601
Name: A, dtype: float64
传递一个命名函数将产生该名称的行:
In [172]: def mymean(x):
.....: return x.mean()
.....:
In [173]: tsdf["A"].agg(["sum", mymean])
Out[173]:
sum 3.033606
mymean 0.505601
Name: A, dtype: float64
向上_DataFrame.agg_ 传递一个包含列名称的字典到一个标量或一堆标量,允许您对哪些函数被应用到哪些列进行自定义。请注意,结果不会按任何特定顺序排列,您可以使用 OrderedDict 来保障顺序。
In [174]: tsdf.agg({"A": "mean", "B": "sum"})
Out[174]:
A 0.505601
B -1.803879
dtype: float64
传递一个列表将生成一个 DataFrame 输出。您将获得所有聚合器的矩阵状输出。输出将由所有唯一函数组成。那些未在特定列中注明的将是 NaN:
In [175]: tsdf.agg({"A": ["mean", "min"], "B": "sum"})
Out[175]:
A B
mean 0.505601 NaN
min -0.749892 NaN
sum NaN -1.803879
运用 .agg() 可以轻松创建自定义 describe 函数,类似于内置的 describe function。
In [176]: from functools import partial
In [177]: q_25 = partial(pd.Series.quantile, q=0.25)
In [178]: q_25.__name__ = "25%"
In [179]: q_75 = partial(pd.Series.quantile, q=0.75)
In [180]: q_75.__name__ = "75%"
In [181]: tsdf.agg(["count", "mean", "std", "min", q_25, "median", q_75, "max"])
Out[181]:
A B C
count 6.000000 6.000000 6.000000
mean 0.505601 -0.300647 0.262585
std 1.103362 0.887508 0.606860
min -0.749892 -1.333363 -0.757304
25% -0.239885 -0.979600 0.128907
median 0.303398 -0.278111 0.225365
75% 1.146791 0.151678 0.722709
max 2.169758 1.004194 0.896839
Transform API
transform() 方法返回一个与其原始值(相同大小)相同索引的对象。此 API 允许您同时提供多个操作,而不是逐个操作。其 API 与 .agg API 非常相似。
我们创建一个类似于上述部分中使用的框架。
In [182]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [183]: tsdf.iloc[3:7] = np.nan
In [184]: tsdf
Out[184]:
A B C
2000-01-01 -0.428759 -0.864890 -0.675341
2000-01-02 -0.168731 1.338144 -1.279321
2000-01-03 -1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -1.240447 -0.201052
2000-01-09 -0.157795 0.791197 -1.144209
2000-01-10 -0.030876 0.371900 0.061932
转换整个框架。.transform() 允许输入函数:NumPy 函数、字符串函数名或用户定义函数。
In [185]: tsdf.transform(np.abs)
Out[185]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
In [186]: tsdf.transform("abs")
Out[186]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
In [187]: tsdf.transform(lambda x: x.abs())
Out[187]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
此处 transform() 接受单个函数;这相当于 ufunc 应用程序。
In [188]: np.abs(tsdf)
Out[188]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
将单个函数与 Series 传递至 .transform() 将返回单个 Series。
In [189]: tsdf["A"].transform(np.abs)
Out[189]:
2000-01-01 0.428759
2000-01-02 0.168731
2000-01-03 1.621034
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
2000-01-08 0.254374
2000-01-09 0.157795
2000-01-10 0.030876
Freq: D, Name: A, dtype: float64
传递多个函数将产生列多重索引 DataFrame。第一级将是原框架列名;第二级将是转换函数的名称。
In [190]: tsdf.transform([np.abs, lambda x: x + 1])
Out[190]:
A B C
absolute <lambda> absolute <lambda> absolute <lambda>
2000-01-01 0.428759 0.571241 0.864890 0.135110 0.675341 0.324659
2000-01-02 0.168731 0.831269 1.338144 2.338144 1.279321 -0.279321
2000-01-03 1.621034 -0.621034 0.438107 1.438107 0.903794 1.903794
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.254374 1.254374 1.240447 -0.240447 0.201052 0.798948
2000-01-09 0.157795 0.842205 0.791197 1.791197 1.144209 -0.144209
2000-01-10 0.030876 0.969124 0.371900 1.371900 0.061932 1.061932
将多个函数传递至 Series 将生成一个 DataFrame。结果列名将是转换函数。
In [191]: tsdf["A"].transform([np.abs, lambda x: x + 1])
Out[191]:
absolute <lambda>
2000-01-01 0.428759 0.571241
2000-01-02 0.168731 0.831269
2000-01-03 1.621034 -0.621034
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 1.254374
2000-01-09 0.157795 0.842205
2000-01-10 0.030876 0.969124
传递函数字典将允许按列进行选择性转换。
In [192]: tsdf.transform({"A": np.abs, "B": lambda x: x + 1})
Out[192]:
A B
2000-01-01 0.428759 0.135110
2000-01-02 0.168731 2.338144
2000-01-03 1.621034 1.438107
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 -0.240447
2000-01-09 0.157795 1.791197
2000-01-10 0.030876 1.371900
传递列表字典将使用这些选择的转换生成多重索引 DataFrame。
In [193]: tsdf.transform({"A": np.abs, "B": [lambda x: x + 1, "sqrt"]})
Out[193]:
A B
absolute <lambda> sqrt
2000-01-01 0.428759 0.135110 NaN
2000-01-02 0.168731 2.338144 1.156782
2000-01-03 1.621034 1.438107 0.661897
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -0.240447 NaN
2000-01-09 0.157795 1.791197 0.889493
2000-01-10 0.030876 1.371900 0.609836
Applying elementwise functions
由于并非所有函数都可以矢量化(接受 NumPy 数组并返回另一个数组或值),所以 DataFrame 上的方法 map() 和 Series 上类似方法 map() 接受任何 Python 函数,该函数接收单个值并返回单个值。例如:
In [194]: df4 = df.copy()
In [195]: df4
Out[195]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [196]: def f(x):
.....: return len(str(x))
.....:
In [197]: df4["one"].map(f)
Out[197]:
a 18
b 19
c 18
d 3
Name: one, dtype: int64
In [198]: df4.map(f)
Out[198]:
one two three
a 18 17 3
b 19 18 20
c 18 18 16
d 3 19 19
Series.map() 具有附加功能;它可用于轻松地“链接”或“映射”由次级 series 定义的值。这与 merging/joining functionality 密切相关:
In [199]: s = pd.Series(
.....: ["six", "seven", "six", "seven", "six"], index=["a", "b", "c", "d", "e"]
.....: )
.....:
In [200]: t = pd.Series({"six": 6.0, "seven": 7.0})
In [201]: s
Out[201]:
a six
b seven
c six
d seven
e six
dtype: object
In [202]: s.map(t)
Out[202]:
a 6.0
b 7.0
c 6.0
d 7.0
e 6.0
dtype: float64
Reindexing and altering labels
reindex() 是 pandas 中的基本数据对齐方法。它用于实现几乎所有其他依赖于标签对齐功能的特性。重新索引意味着使数据符合沿特定轴的给定标签集。这会完成几件事:
-
重新排列现有数据以匹配新的标签集
-
在不存在该标签的数据的标签位置插入缺失值 (NA) 标记
-
如果指定,使用逻辑填充缺失标签的数据(与时间序列数据的工作高度相关)
这是一个简单的示例:
In [203]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
In [204]: s
Out[204]:
a 1.695148
b 1.328614
c 1.234686
d -0.385845
e -1.326508
dtype: float64
In [205]: s.reindex(["e", "b", "f", "d"])
Out[205]:
e -1.326508
b 1.328614
f NaN
d -0.385845
dtype: float64
此处,f 标签未包含在 Series 中,因此结果中显示为 NaN。
通过 DataFrame,您可以同时重新索引索引和列:
In [206]: df
Out[206]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [207]: df.reindex(index=["c", "f", "b"], columns=["three", "two", "one"])
Out[207]:
three two one
c 1.227435 1.478369 0.695246
f NaN NaN NaN
b -0.050390 1.912123 0.343054
请注意,包含实际轴标签的 Index 对象可在对象之间共享。因此,如果我们有 Series 和 DataFrame,就可以执行以下操作:
In [208]: rs = s.reindex(df.index)
In [209]: rs
Out[209]:
a 1.695148
b 1.328614
c 1.234686
d -0.385845
dtype: float64
In [210]: rs.index is df.index
Out[210]: True
这意味着重新索引 Series 的索引与 DataFrame 的索引是同一个 Python 对象。
DataFrame.reindex() 还支持“轴样式”调用约定,在此指定单个 labels 参数及 axis 应用于其的指定。
In [211]: df.reindex(["c", "f", "b"], axis="index")
Out[211]:
one two three
c 0.695246 1.478369 1.227435
f NaN NaN NaN
b 0.343054 1.912123 -0.050390
In [212]: df.reindex(["three", "two", "one"], axis="columns")
Out[212]:
three two one
a NaN 1.772517 1.394981
b -0.050390 1.912123 0.343054
c 1.227435 1.478369 0.695246
d -0.613172 0.279344 NaN
请参阅
MultiIndex / Advanced Indexing 是执行重新索引更加简明的一种方式。
在编写对性能敏感的代码时,投入大量时间成为重新索引领域的专家是有一定道理的:在经过预先对齐的数据上执行很多操作都很快。添加两个未对齐的 DataFrame 会在内部触发重新索引步骤。对于探索性分析,你几乎不会注意到其中的区别(因为 reindex 已经过大量优化),但是当 CPU 周期至关重要时,在不同的地方散布一些明确的 reindex 调用会产生一定的影响。 |
Reindexing to align with another object
你可能希望对一个对象重新索引,使其轴标签与另一个对象相同。虽然这种语法的编写很简单,但也十分冗长,这是一个很常见的操作,方法 reindex_like() 便用来简化这项操作:
In [213]: df2 = df.reindex(["a", "b", "c"], columns=["one", "two"])
In [214]: df3 = df2 - df2.mean()
In [215]: df2
Out[215]:
one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369
In [216]: df3
Out[216]:
one two
a 0.583888 0.051514
b -0.468040 0.191120
c -0.115848 -0.242634
In [217]: df.reindex_like(df2)
Out[217]:
one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369
Aligning objects with each other with align
方法 align() 是同时对齐两个对象的最快方式。它支持 join 参数(与 joining and merging 相关):
-
join='outer':取索引的并集(默认)
-
join='left':使用调用对象的索引
-
join='right':使用传递对象的索引
-
join='inner': intersect the indexes
它会返回一个包含重新索引的 Series 的元组:
In [218]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
In [219]: s1 = s[:4]
In [220]: s2 = s[1:]
In [221]: s1.align(s2)
Out[221]:
(a -0.186646
b -1.692424
c -0.303893
d -1.425662
e NaN
dtype: float64,
a NaN
b -1.692424
c -0.303893
d -1.425662
e 1.114285
dtype: float64)
In [222]: s1.align(s2, join="inner")
Out[222]:
(b -1.692424
c -0.303893
d -1.425662
dtype: float64,
b -1.692424
c -0.303893
d -1.425662
dtype: float64)
In [223]: s1.align(s2, join="left")
Out[223]:
(a -0.186646
b -1.692424
c -0.303893
d -1.425662
dtype: float64,
a NaN
b -1.692424
c -0.303893
d -1.425662
dtype: float64)
对于 DataFrame 来说,默认情况下 join 方法将同时应用于索引和列:
In [224]: df.align(df2, join="inner")
Out[224]:
( one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369,
one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369)
你还可以传递 axis 选项,以只对指定的轴进行对齐:
In [225]: df.align(df2, join="inner", axis=0)
Out[225]:
( one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435,
one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369)
如果你将一个 Series 传递给 DataFrame.align(),则可以选择使用 axis 参数对两个对象在 DataFrame 的索引或列上进行对齐:
In [226]: df.align(df2.iloc[0], axis=1)
Out[226]:
( one three two
a 1.394981 NaN 1.772517
b 0.343054 -0.050390 1.912123
c 0.695246 1.227435 1.478369
d NaN -0.613172 0.279344,
one 1.394981
three NaN
two 1.772517
Name: a, dtype: float64)
Filling while reindexing
reindex() 接受一个可选参数 method,它是一个从下表中选择的填充方法:
方法
操作
pad / ffill
向前填充值
bfill / backfill
向后填充值
nearest
从最近的索引值填充值
在简单的序列中演示这些填充方法:
In [227]: rng = pd.date_range("1/3/2000", periods=8)
In [228]: ts = pd.Series(np.random.randn(8), index=rng)
In [229]: ts2 = ts.iloc[[0, 3, 6]]
In [230]: ts
Out[230]:
2000-01-03 0.183051
2000-01-04 0.400528
2000-01-05 -0.015083
2000-01-06 2.395489
2000-01-07 1.414806
2000-01-08 0.118428
2000-01-09 0.733639
2000-01-10 -0.936077
Freq: D, dtype: float64
In [231]: ts2
Out[231]:
2000-01-03 0.183051
2000-01-06 2.395489
2000-01-09 0.733639
Freq: 3D, dtype: float64
In [232]: ts2.reindex(ts.index)
Out[232]:
2000-01-03 0.183051
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 2.395489
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 0.733639
2000-01-10 NaN
Freq: D, dtype: float64
In [233]: ts2.reindex(ts.index, method="ffill")
Out[233]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 0.183051
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 2.395489
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
In [234]: ts2.reindex(ts.index, method="bfill")
Out[234]:
2000-01-03 0.183051
2000-01-04 2.395489
2000-01-05 2.395489
2000-01-06 2.395489
2000-01-07 0.733639
2000-01-08 0.733639
2000-01-09 0.733639
2000-01-10 NaN
Freq: D, dtype: float64
In [235]: ts2.reindex(ts.index, method="nearest")
Out[235]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 2.395489
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 0.733639
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
这些方法要求索引按递增或递减排序。
请注意,可以使用 ffill(method='nearest' 除外)或 interpolate 获得相同的结果:
In [236]: ts2.reindex(ts.index).ffill()
Out[236]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 0.183051
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 2.395489
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
如果索引不是单调递增或递减, reindex() 将引发 ValueError。 fillna() 和 interpolate() 不会对索引顺序执行任何检查。
Limits on filling while reindexing
limit 和 tolerance 参数提供了对重新索引时的填充的额外控制。Limit 指定连续匹配的最大计数:
In [237]: ts2.reindex(ts.index, method="ffill", limit=1)
Out[237]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 NaN
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 NaN
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
相比之下,tolerance 指定索引和索引器值之间的最大距离:
In [238]: ts2.reindex(ts.index, method="ffill", tolerance="1 day")
Out[238]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 NaN
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 NaN
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
请注意,当用于 DatetimeIndex、TimedeltaIndex 或 PeriodIndex 时,tolerance 将尽可能强制转换为 Timedelta。这允许您使用适当的字符串指定容差。
Dropping labels from an axis
与 reindex 紧密相关的另一种方法是 drop() 函数。它从轴中删除了一组标签:
In [239]: df
Out[239]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [240]: df.drop(["a", "d"], axis=0)
Out[240]:
one two three
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
In [241]: df.drop(["one"], axis=1)
Out[241]:
two three
a 1.772517 NaN
b 1.912123 -0.050390
c 1.478369 1.227435
d 0.279344 -0.613172
请注意,以下内容也能正常工作,但不太明显/清晰:
In [242]: df.reindex(df.index.difference(["a", "d"]))
Out[242]:
one two three
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
Renaming / mapping labels
rename() 方法允许您基于某个映射(一个字典或序列)或一个任意函数重新标记轴。
In [243]: s
Out[243]:
a -0.186646
b -1.692424
c -0.303893
d -1.425662
e 1.114285
dtype: float64
In [244]: s.rename(str.upper)
Out[244]:
A -0.186646
B -1.692424
C -0.303893
D -1.425662
E 1.114285
dtype: float64
如果您传递一个函数,那么当用任何标签调用它时,它必须返回一个值(并且必须产生一组唯一的值)。也可以使用 dict 或 Series:
In [245]: df.rename(
.....: columns={"one": "foo", "two": "bar"},
.....: index={"a": "apple", "b": "banana", "d": "durian"},
.....: )
.....:
Out[245]:
foo bar three
apple 1.394981 1.772517 NaN
banana 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
durian NaN 0.279344 -0.613172
如果没有将映射包含在列/索引标签中,则不会重命名它。请注意,映射中的额外标签不会引发错误。
DataFrame.rename() 还支持“轴风格”调用约定,其中您指定一个 mapper 和一个 axis 来应用该映射。
In [246]: df.rename({"one": "foo", "two": "bar"}, axis="columns")
Out[246]:
foo bar three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [247]: df.rename({"a": "apple", "b": "banana", "d": "durian"}, axis="index")
Out[247]:
one two three
apple 1.394981 1.772517 NaN
banana 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
durian NaN 0.279344 -0.613172
最后, rename() 还接受一个标量或列表来更改 Series.name 属性。
In [248]: s.rename("scalar-name")
Out[248]:
a -0.186646
b -1.692424
c -0.303893
d -1.425662
e 1.114285
Name: scalar-name, dtype: float64
方法 DataFrame.rename_axis() 和 Series.rename_axis() 允许更改 MultiIndex 的特定名称(而不是标签)。
In [249]: df = pd.DataFrame(
.....: {"x": [1, 2, 3, 4, 5, 6], "y": [10, 20, 30, 40, 50, 60]},
.....: index=pd.MultiIndex.from_product(
.....: [["a", "b", "c"], [1, 2]], names=["let", "num"]
.....: ),
.....: )
.....:
In [250]: df
Out[250]:
x y
let num
a 1 1 10
2 2 20
b 1 3 30
2 4 40
c 1 5 50
2 6 60
In [251]: df.rename_axis(index={"let": "abc"})
Out[251]:
x y
abc num
a 1 1 10
2 2 20
b 1 3 30
2 4 40
c 1 5 50
2 6 60
In [252]: df.rename_axis(index=str.upper)
Out[252]:
x y
LET NUM
a 1 1 10
2 2 20
b 1 3 30
2 4 40
c 1 5 50
2 6 60
Iteration
通过 pandas 对象基本迭代的行为取决于类型。遍历 Series 时,会被视为类似数组,并且基本迭代会产生值。DataFrame 遵循类似于 dict 的约定,遍历对象的“键”。
简而言之,基本迭代 (for i in object) 会产生:
-
Series: values
-
DataFrame: column labels
因此,例如,迭代 DataFrame 将提供列名称:
In [253]: df = pd.DataFrame(
.....: {"col1": np.random.randn(3), "col2": np.random.randn(3)}, index=["a", "b", "c"]
.....: )
.....:
In [254]: for col in df:
.....: print(col)
.....:
col1
col2
pandas 对象还具有类似于 dict 的 items() 方法,用于遍历(键、值)对。
要遍历 DataFrame 的行,可以使用以下方法:
-
iterrows():以 (索引、序列) 对的形式遍历 DataFrame 的行。这会将行转换为序列对象,这可能会更改数据类型并对性能产生一些影响。
-
itertuples():以值的有名字的元组的形式遍历 DataFrame 的行。这比 iterrows() 快很多,在大多数情况下最好用来遍历 DataFrame 的值。
警告
遍历 pandas 对象通常较慢。在许多情况下,不需要手动遍历行并且可以使用以下一种方法避免:
-
寻找一个矢量化解决方案:可以使用内置方法或 NumPy 函数执行许多操作,(布尔)索引,…
-
当您有一个函数不能一次在整个 DataFrame/序列上工作时,最好使用 apply() 而不是遍历值。请参阅 function application 中的文档。
-
如果您需要对值进行迭代操作但性能很重要,请考虑使用 cython 或 numba 编写内循环。有关此方法的一些示例,请参阅 enhancing performance 部分。
警告
您决不应修改您正在遍历的内容。并非在所有情况下都能保证此方法有效。根据数据类型,迭代器返回一个副本而不是一个视图,写入它不会产生任何效果!
例如,在以下情况下设置值不起作用:
In [255]: df = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
In [256]: for index, row in df.iterrows():
.....: row["a"] = 10
.....:
In [257]: df
Out[257]:
a b
0 1 a
1 2 b
2 3 c
items
与 dict 类似的界面一致, items() 遍历键值对:
-
序列:{(索引,标量值) 对}
-
DataFrame: (column, Series) pairs
例如:
In [258]: for label, ser in df.items():
.....: print(label)
.....: print(ser)
.....:
a
0 1
1 2
2 3
Name: a, dtype: int64
b
0 a
1 b
2 c
Name: b, dtype: object
iterrows
iterrows() 允许您以序列对象的形式遍历 DataFrame 的行。它返回一个迭代器,产生每个索引值以及包含每行中数据的序列:
In [259]: for row_index, row in df.iterrows():
.....: print(row_index, row, sep="\n")
.....:
0
a 1
b a
Name: 0, dtype: object
1
a 2
b b
Name: 1, dtype: object
2
a 3
b c
Name: 2, dtype: object
因为 iterrows() 为每行返回一个序列,所以它不会保留行中的数据类型(数据类型保留在 DataFrames 的列中)。例如, |
In [260]: df_orig = pd.DataFrame([[1, 1.5]], columns=["int", "float"])
In [261]: df_orig.dtypes
Out[261]:
int int64
float float64
dtype: object
In [262]: row = next(df_orig.iterrows())[1]
In [263]: row
Out[263]:
int 1.0
float 1.5
Name: 0, dtype: float64
row 中的所有值(以序列形式返回)现在都会提升为浮点数,包括列 x 中的原始整数值:
In [264]: row["int"].dtype
Out[264]: dtype('float64')
In [265]: df_orig["int"].dtype
Out[265]: dtype('int64')
要在遍历行时保留数据类型,最好使用 itertuples(),它返回值的命名元组,并且通常比 iterrows() 快得多。
例如,转换 DataFrame 的一种人为方式如下:
In [266]: df2 = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
In [267]: print(df2)
x y
0 1 4
1 2 5
2 3 6
In [268]: print(df2.T)
0 1 2
x 1 2 3
y 4 5 6
In [269]: df2_t = pd.DataFrame({idx: values for idx, values in df2.iterrows()})
In [270]: print(df2_t)
0 1 2
x 1 2 3
y 4 5 6
itertuples
itertuples() 方法将返回一个迭代器,为 DataFrame 中的每行产生一个元组。元组的第一个元素将是行的相应索引值,而其余值是行值。
例如:
In [271]: for row in df.itertuples():
.....: print(row)
.....:
Pandas(Index=0, a=1, b='a')
Pandas(Index=1, a=2, b='b')
Pandas(Index=2, a=3, b='c')
此方法不会将行转换为序列对象;它只是在元组中返回值。因此, itertuples() 保留了值的类型,并且通常比 iterrows() 快得多。
如果列名称不是有效的 Python 标识符,重复或以下划线开头,则列名称将被重命名为位置名称。对于大量的列 (>255),将返回常规元组。 |
.dt accessor
如果 Series 是类似 datetime/period 的 Series,则它具有一个访问器,可以简洁地返回类似 Series 值的 datetime 属性。这将返回一个 Series,其索引与现有的 Series 相同。
# datetime
In [272]: s = pd.Series(pd.date_range("20130101 09:10:12", periods=4))
In [273]: s
Out[273]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]
In [274]: s.dt.hour
Out[274]:
0 9
1 9
2 9
3 9
dtype: int32
In [275]: s.dt.second
Out[275]:
0 12
1 12
2 12
3 12
dtype: int32
In [276]: s.dt.day
Out[276]:
0 1
1 2
2 3
3 4
dtype: int32
这使得以下类型的表达变得更简洁:
In [277]: s[s.dt.day == 2]
Out[277]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]
你可以轻松生成时区感知转换:
In [278]: stz = s.dt.tz_localize("US/Eastern")
In [279]: stz
Out[279]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]
In [280]: stz.dt.tz
Out[280]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>
你也可以链接这些类型操作:
In [281]: s.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
Out[281]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]
你还可以使用 Series.dt.strftime() 将 datetime 值格式化为字符串,它支持与标准 strftime() 相同的格式。
# DatetimeIndex
In [282]: s = pd.Series(pd.date_range("20130101", periods=4))
In [283]: s
Out[283]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]
In [284]: s.dt.strftime("%Y/%m/%d")
Out[284]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
# PeriodIndex
In [285]: s = pd.Series(pd.period_range("20130101", periods=4))
In [286]: s
Out[286]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: period[D]
In [287]: s.dt.strftime("%Y/%m/%d")
Out[287]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
访问器 .dt 可用于周期和时间差数据类型。
# period
In [288]: s = pd.Series(pd.period_range("20130101", periods=4, freq="D"))
In [289]: s
Out[289]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: period[D]
In [290]: s.dt.year
Out[290]:
0 2013
1 2013
2 2013
3 2013
dtype: int64
In [291]: s.dt.day
Out[291]:
0 1
1 2
2 3
3 4
dtype: int64
# timedelta
In [292]: s = pd.Series(pd.timedelta_range("1 day 00:00:05", periods=4, freq="s"))
In [293]: s
Out[293]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]
In [294]: s.dt.days
Out[294]:
0 1
1 1
2 1
3 1
dtype: int64
In [295]: s.dt.seconds
Out[295]:
0 5
1 6
2 7
3 8
dtype: int32
In [296]: s.dt.components
Out[296]:
days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 5 0 0 0
1 1 0 0 6 0 0 0
2 1 0 0 7 0 0 0
3 1 0 0 8 0 0 0
如果你使用的是非 datetime 类似值进行访问的话,Series.dt 就会引发 TypeError。 |
Vectorized string methods
Series оснащён набором методов обработки строк, которые облегчают оперирование каждым элементом массива. Возможно, самое важное, что эти методы автоматически исключают пропущенные/NA значения. Доступ к ним осуществляется через атрибут str Series и обычно их имена совпадают с эквивалентными (скалярными) встроенными методами работы со строками. Например:
In [297]: s = pd.Series(
.....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
.....: )
.....:
In [298]: s.str.lower()
Out[298]:
0 a
1 b
2 c
3 aaba
4 baca
5 <NA>
6 caba
7 dog
8 cat
dtype: string
Мощные методы сопоставления с образцом также предоставляются, но имейте в виду, что сопоставление с образцом обычно использует regular expressions по умолчанию (а в некоторых случаях всегда их использует).
До pandas 1.0 методы работы со строками были доступны только для object -типа Series. pandas 1.0 добавил StringDtype, который предназначен для строк. Дополнительные сведения см. в Text data types. |
Полное описание см. в Vectorized String Methods.
Sorting
pandas поддерживает три вида сортировки: сортировка по меткам индекса, сортировка по значениям столбцов и сортировка по комбинации обоих.
By index
Методы Series.sort_index() и DataFrame.sort_index() используются для сортировки объекта pandas по его уровням индекса.
In [299]: df = pd.DataFrame(
.....: {
.....: "one": pd.Series(np.random.randn(3), index=["a", "b", "c"]),
.....: "two": pd.Series(np.random.randn(4), index=["a", "b", "c", "d"]),
.....: "three": pd.Series(np.random.randn(3), index=["b", "c", "d"]),
.....: }
.....: )
.....:
In [300]: unsorted_df = df.reindex(
.....: index=["a", "d", "c", "b"], columns=["three", "two", "one"]
.....: )
.....:
In [301]: unsorted_df
Out[301]:
three two one
a NaN -1.152244 0.562973
d -0.252916 -0.109597 NaN
c 1.273388 -0.167123 0.640382
b -0.098217 0.009797 -1.299504
# DataFrame
In [302]: unsorted_df.sort_index()
Out[302]:
three two one
a NaN -1.152244 0.562973
b -0.098217 0.009797 -1.299504
c 1.273388 -0.167123 0.640382
d -0.252916 -0.109597 NaN
In [303]: unsorted_df.sort_index(ascending=False)
Out[303]:
three two one
d -0.252916 -0.109597 NaN
c 1.273388 -0.167123 0.640382
b -0.098217 0.009797 -1.299504
a NaN -1.152244 0.562973
In [304]: unsorted_df.sort_index(axis=1)
Out[304]:
one three two
a 0.562973 NaN -1.152244
d NaN -0.252916 -0.109597
c 0.640382 1.273388 -0.167123
b -1.299504 -0.098217 0.009797
# Series
In [305]: unsorted_df["three"].sort_index()
Out[305]:
a NaN
b -0.098217
c 1.273388
d -0.252916
Name: three, dtype: float64
Сортировка по индексу также поддерживает параметр key, который принимает вызываемую функцию для применения к сортируемому индексу. Для объектов MultiIndex ключ применяется к каждому уровню для уровней, заданных level.
In [306]: s1 = pd.DataFrame({"a": ["B", "a", "C"], "b": [1, 2, 3], "c": [2, 3, 4]}).set_index(
.....: list("ab")
.....: )
.....:
In [307]: s1
Out[307]:
c
a b
B 1 2
a 2 3
C 3 4
In [308]: s1.sort_index(level="a")
Out[308]:
c
a b
B 1 2
C 3 4
a 2 3
In [309]: s1.sort_index(level="a", key=lambda idx: idx.str.lower())
Out[309]:
c
a b
a 2 3
B 1 2
C 3 4
Сведения о сортировке ключей по значению см. в value sorting.
By values
Метод Series.sort_values() используется для сортировки Series по его значениям. Метод DataFrame.sort_values() используется для сортировки DataFrame по его значениям столбца или строки. Необязательный параметр by для DataFrame.sort_values() может использоваться для указания одного или более столбцов, чтобы определить сортируемый порядок.
In [310]: df1 = pd.DataFrame(
.....: {"one": [2, 1, 1, 1], "two": [1, 3, 2, 4], "three": [5, 4, 3, 2]}
.....: )
.....:
In [311]: df1.sort_values(by="two")
Out[311]:
one two three
0 2 1 5
2 1 2 3
1 1 3 4
3 1 4 2
Параметр by может принимать список имен столбцов, например:
In [312]: df1[["one", "two", "three"]].sort_values(by=["one", "two"])
Out[312]:
one two three
2 1 2 3
1 1 3 4
3 1 4 2
0 2 1 5
Эти методы предусматривают специальную обработку NA-значений с помощью аргумента na_position:
In [313]: s[2] = np.nan
In [314]: s.sort_values()
Out[314]:
0 A
3 Aaba
1 B
4 Baca
6 CABA
8 cat
7 dog
2 <NA>
5 <NA>
dtype: string
In [315]: s.sort_values(na_position="first")
Out[315]:
2 <NA>
5 <NA>
0 A
3 Aaba
1 B
4 Baca
6 CABA
8 cat
7 dog
dtype: string
Сортировка также поддерживает параметр key, который принимает вызываемую функцию для применения к сортируемым значениям.
In [316]: s1 = pd.Series(["B", "a", "C"])
In [317]: s1.sort_values()
Out[317]:
0 B
2 C
1 a
dtype: object
In [318]: s1.sort_values(key=lambda x: x.str.lower())
Out[318]:
1 a
0 B
2 C
dtype: object
key 将赋予 Series 值,并应返回 Series 或具有相同形状的数组,其中包含转换值。对于 DataFrame 对象,该键按列应用,因此该键仍然期望获得序列并返回序列,例如:
In [319]: df = pd.DataFrame({"a": ["B", "a", "C"], "b": [1, 2, 3]})
In [320]: df.sort_values(by="a")
Out[320]:
a b
0 B 1
2 C 3
1 a 2
In [321]: df.sort_values(by="a", key=lambda col: col.str.lower())
Out[321]:
a b
1 a 2
0 B 1
2 C 3
每列的名称或类型均可用于向不同列应用不同的函数。
By indexes and values
传递给 DataFrame.sort_values() 的 by 参数的字符串可能引用列或索引级别名称。
# Build MultiIndex
In [322]: idx = pd.MultiIndex.from_tuples(
.....: [("a", 1), ("a", 2), ("a", 2), ("b", 2), ("b", 1), ("b", 1)]
.....: )
.....:
In [323]: idx.names = ["first", "second"]
# Build DataFrame
In [324]: df_multi = pd.DataFrame({"A": np.arange(6, 0, -1)}, index=idx)
In [325]: df_multi
Out[325]:
A
first second
a 1 6
2 5
2 4
b 2 3
1 2
1 1
按“第二个”(索引)和“A”(列)进行排序
In [326]: df_multi.sort_values(by=["second", "A"])
Out[326]:
A
first second
b 1 1
1 2
a 1 6
b 2 3
a 2 4
2 5
如果字符串同时与列名称和索引级别名称匹配,则会发出警告并优先考虑列。这会在将来的版本中导致歧义错误。 |
searchsorted
Series 具有 searchsorted() 方法,其工作方式类似于 numpy.ndarray.searchsorted()。
In [327]: ser = pd.Series([1, 2, 3])
In [328]: ser.searchsorted([0, 3])
Out[328]: array([0, 2])
In [329]: ser.searchsorted([0, 4])
Out[329]: array([0, 3])
In [330]: ser.searchsorted([1, 3], side="right")
Out[330]: array([1, 3])
In [331]: ser.searchsorted([1, 3], side="left")
Out[331]: array([0, 2])
In [332]: ser = pd.Series([3, 1, 2])
In [333]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[333]: array([0, 2])
smallest / largest values
Series 具有 nsmallest() 和 nlargest() 方法,可返回最小的或最大的 \(n\) 值。对于较大的 Series,这比对整个系列进行排序和对结果调用 head(n) 快得多。
In [334]: s = pd.Series(np.random.permutation(10))
In [335]: s
Out[335]:
0 2
1 0
2 3
3 7
4 1
5 5
6 9
7 6
8 8
9 4
dtype: int64
In [336]: s.sort_values()
Out[336]:
1 0
4 1
0 2
2 3
9 4
5 5
7 6
3 7
8 8
6 9
dtype: int64
In [337]: s.nsmallest(3)
Out[337]:
1 0
4 1
0 2
dtype: int64
In [338]: s.nlargest(3)
Out[338]:
6 9
8 8
3 7
dtype: int64
DataFrame 还具有 nlargest 和 nsmallest 方法。
In [339]: df = pd.DataFrame(
.....: {
.....: "a": [-2, -1, 1, 10, 8, 11, -1],
.....: "b": list("abdceff"),
.....: "c": [1.0, 2.0, 4.0, 3.2, np.nan, 3.0, 4.0],
.....: }
.....: )
.....:
In [340]: df.nlargest(3, "a")
Out[340]:
a b c
5 11 f 3.0
3 10 c 3.2
4 8 e NaN
In [341]: df.nlargest(5, ["a", "c"])
Out[341]:
a b c
5 11 f 3.0
3 10 c 3.2
4 8 e NaN
2 1 d 4.0
6 -1 f 4.0
In [342]: df.nsmallest(3, "a")
Out[342]:
a b c
0 -2 a 1.0
1 -1 b 2.0
6 -1 f 4.0
In [343]: df.nsmallest(5, ["a", "c"])
Out[343]:
a b c
0 -2 a 1.0
1 -1 b 2.0
6 -1 f 4.0
2 1 d 4.0
4 8 e NaN
Copying
pandas 对象上的 copy() 方法复制基础数据(但不复制轴索引,因为它们是不可变的)并返回一个新对象。请注意,几乎不需要复制对象。例如,只有少数几种方式可以改变 DataFrame 原地:
-
插入、删除或修改列。
-
赋值给 index 或 columns 属性。
-
对于同类数据,直接通过 values 属性或高级索引修改值。
明确地说,没有一种 pandas 方法具有修改您数据的副作用。几乎每种方法都返回一个新对象,而不触及原始对象。如果数据被修改,那是因为您明确这样做。
dtypes
在大多数情况下,pandas 使用 NumPy 数组和 dtypes 用于 Series 或 DataFrame 的各个列。NumPy 支持_float_、int、bool、timedelta64[ns] 和 datetime64[ns](请注意,NumPy 不支持具有时区意识的日期时间)。
pandas 和第三方库在少数几个地方扩展了 NumPy 的类型系统。本节介绍 pandas 已在内部做出的扩展。请参阅 Extension types,了解如何编写可在 pandas 中使用的自己的扩展。请参阅 the ecosystem page,了解已实现扩展的第三方库的列表。
下表列出了所有 pandas 扩展类型。对于需要_dtype_ 参数的方法,可以按指示指定字符串。有关每种类型的更多信息,请参阅各个文档部分。
数据类型
数据类型
标量
数组
字符串别名
'datetime64[ns, <tz>]'
(无)
'category'
arrays.PeriodArray 'Period[<freq>]'
'period[<freq>]',
(无)
'Sparse'、'Sparse[int]'、'Sparse[float]'
'interval'、'Interval'、'Interval[<numpy_dtype>]'、'Interval[datetime64[ns, <tz>]]'、'Interval[timedelta64[<freq>]]'
Int64Dtype、……
(无)
'Int8'、'Int16'、'Int32'、'Int64'、'UInt8'、'UInt16'、'UInt32'、'UInt64'
Float64Dtype、……
(无)
'Float32'、'Float64'
'string'
'boolean'
Pandas 有两种存储字符串的方法。
-
_object_数据类型,它可以容纳任何 Python 对象,包括字符串。
-
StringDtype,专门用于字符串。
通常,我们建议使用 StringDtype。有关更多信息,请参阅 Text data types。
最后,可以使用 object 数据类型存储任意对象,但是应该尽可能避免(以提高与其他库和方法的性能和互操作性。请参阅 object conversion)。
dtypes DataFrame 的属性方便地返回带有每列数据类型的 Series。
In [346]: dft = pd.DataFrame(
.....: {
.....: "A": np.random.rand(3),
.....: "B": 1,
.....: "C": "foo",
.....: "D": pd.Timestamp("20010102"),
.....: "E": pd.Series([1.0] * 3).astype("float32"),
.....: "F": False,
.....: "G": pd.Series([1] * 3, dtype="int8"),
.....: }
.....: )
.....:
In [347]: dft
Out[347]:
A B C D E F G
0 0.035962 1 foo 2001-01-02 1.0 False 1
1 0.701379 1 foo 2001-01-02 1.0 False 1
2 0.281885 1 foo 2001-01-02 1.0 False 1
In [348]: dft.dtypes
Out[348]:
A float64
B int64
C object
D datetime64[s]
E float32
F bool
G int8
dtype: object
在 Series 对象上,使用 dtype 属性。
In [349]: dft["A"].dtype
Out[349]: dtype('float64')
如果 pandas 对象包含单列中具有多个数据类型的数据,则会选择该列的数据类型以容纳所有数据类型(_object_是最通用的)。
# these ints are coerced to floats
In [350]: pd.Series([1, 2, 3, 4, 5, 6.0])
Out[350]:
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
5 6.0
dtype: float64
# string data forces an ``object`` dtype
In [351]: pd.Series([1, 2, 3, 6.0, "foo"])
Out[351]:
0 1
1 2
2 3
3 6.0
4 foo
dtype: object
可以通过调用 DataFrame.dtypes.value_counts() 找到 DataFrame 中每种类型列的数量。
In [352]: dft.dtypes.value_counts()
Out[352]:
float64 1
int64 1
object 1
datetime64[s] 1
float32 1
bool 1
int8 1
Name: count, dtype: int64
数值数据类型将传播,并且可以在 DataFrame 中共存。如果传递了数据类型(直接通过 dtype 关键字、传递的 ndarray,或传递的 Series),那么它将保留在 DataFrame 运算中。此外,不会合并不同的数值数据类型。以下示例将让您了解。
In [353]: df1 = pd.DataFrame(np.random.randn(8, 1), columns=["A"], dtype="float32")
In [354]: df1
Out[354]:
A
0 0.224364
1 1.890546
2 0.182879
3 0.787847
4 -0.188449
5 0.667715
6 -0.011736
7 -0.399073
In [355]: df1.dtypes
Out[355]:
A float32
dtype: object
In [356]: df2 = pd.DataFrame(
.....: {
.....: "A": pd.Series(np.random.randn(8), dtype="float16"),
.....: "B": pd.Series(np.random.randn(8)),
.....: "C": pd.Series(np.random.randint(0, 255, size=8), dtype="uint8"), # [0,255] (range of uint8)
.....: }
.....: )
.....:
In [357]: df2
Out[357]:
A B C
0 0.823242 0.256090 26
1 1.607422 1.426469 86
2 -0.333740 -0.416203 46
3 -0.063477 1.139976 212
4 -1.014648 -1.193477 26
5 0.678711 0.096706 7
6 -0.040863 -1.956850 184
7 -0.357422 -0.714337 206
In [358]: df2.dtypes
Out[358]:
A float16
B float64
C uint8
dtype: object
defaults
默认情况下,整数类型为 int64,浮点类型为 float64,与平台(32 位或 64 位)无关。以下内容将全部生成 int64 数据类型。
In [359]: pd.DataFrame([1, 2], columns=["a"]).dtypes
Out[359]:
a int64
dtype: object
In [360]: pd.DataFrame({"a": [1, 2]}).dtypes
Out[360]:
a int64
dtype: object
In [361]: pd.DataFrame({"a": 1}, index=list(range(2))).dtypes
Out[361]:
a int64
dtype: object
请注意,Numpy 在创建数组时将选择与平台相关的类型。在 32 位平台上,以下内容将生成 int32。
In [362]: frame = pd.DataFrame(np.array([1, 2]))
upcasting
将类型与其他类型组合时,可能会将类型向上转换,这意味着它们从当前类型(例如 int 到 float)得到提升。
In [363]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
In [364]: df3
Out[364]:
A B C
0 1.047606 0.256090 26.0
1 3.497968 1.426469 86.0
2 -0.150862 -0.416203 46.0
3 0.724370 1.139976 212.0
4 -1.203098 -1.193477 26.0
5 1.346426 0.096706 7.0
6 -0.052599 -1.956850 184.0
7 -0.756495 -0.714337 206.0
In [365]: df3.dtypes
Out[365]:
A float32
B float64
C float64
dtype: object
DataFrame.to_numpy() 将返回数据类型的最简公分母,这意味着可以容纳在结果同构数据类型 NumPy 数组中的所有类型的数据类型。这可能会强制进行一些向上转换。
In [366]: df3.to_numpy().dtype
Out[366]: dtype('float64')
astype
可以使用 astype() 方法将数据类型从一种显式转换为另一种。这些方法默认情况下会返回一个副本,即使数据类型未更改(传递 copy=False 以更改此行为)。此外,如果 astype 操作无效,它们会引发异常。
向上转换始终根据 NumPy 规则。如果一个操作中涉及两个不同的数据类型,则将使用更通用数据类型作为操作结果。
In [367]: df3
Out[367]:
A B C
0 1.047606 0.256090 26.0
1 3.497968 1.426469 86.0
2 -0.150862 -0.416203 46.0
3 0.724370 1.139976 212.0
4 -1.203098 -1.193477 26.0
5 1.346426 0.096706 7.0
6 -0.052599 -1.956850 184.0
7 -0.756495 -0.714337 206.0
In [368]: df3.dtypes
Out[368]:
A float32
B float64
C float64
dtype: object
# conversion of dtypes
In [369]: df3.astype("float32").dtypes
Out[369]:
A float32
B float32
C float32
dtype: object
使用 astype() 将列子集转换为指定类型。
In [370]: dft = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
In [371]: dft[["a", "b"]] = dft[["a", "b"]].astype(np.uint8)
In [372]: dft
Out[372]:
a b c
0 1 4 7
1 2 5 8
2 3 6 9
In [373]: dft.dtypes
Out[373]:
a uint8
b uint8
c int64
dtype: object
通过将字典传递给 astype(),将特定列转换为特定数据类型。
In [374]: dft1 = pd.DataFrame({"a": [1, 0, 1], "b": [4, 5, 6], "c": [7, 8, 9]})
In [375]: dft1 = dft1.astype({"a": np.bool_, "c": np.float64})
In [376]: dft1
Out[376]:
a b c
0 True 4 7.0
1 False 5 8.0
2 True 6 9.0
In [377]: dft1.dtypes
Out[377]:
a bool
b int64
c float64
dtype: object
loc() 尝试调整我们正在分配给当前数据类型的内容,而 [] 将覆盖它们,采用右侧的数据类型。因此,以下代码段会产生意外结果。
In [378]: dft = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
In [379]: dft.loc[:, ["a", "b"]].astype(np.uint8).dtypes
Out[379]:
a uint8
b uint8
dtype: object
In [380]: dft.loc[:, ["a", "b"]] = dft.loc[:, ["a", "b"]].astype(np.uint8)
In [381]: dft.dtypes
Out[381]:
a int64
b int64
c int64
dtype: object
object conversion
pandas 提供了各种功能以尝试强制将类型从 object 数据类型转换为其他类型。如果数据已经具有正确类型,但存储在 object 数组中,则可以使用 DataFrame.infer_objects() 和 Series.infer_objects() 方法将数据软转换为正确类型。
In [382]: import datetime
In [383]: df = pd.DataFrame(
.....: [
.....: [1, 2],
.....: ["a", "b"],
.....: [datetime.datetime(2016, 3, 2), datetime.datetime(2016, 3, 2)],
.....: ]
.....: )
.....:
In [384]: df = df.T
In [385]: df
Out[385]:
0 1 2
0 1 a 2016-03-02 00:00:00
1 2 b 2016-03-02 00:00:00
In [386]: df.dtypes
Out[386]:
0 object
1 object
2 object
dtype: object
由于数据已经转置,因此原始推论将所有列存储为对象,而 infer_objects 将更正这一点。
In [387]: df.infer_objects().dtypes
Out[387]:
0 int64
1 object
2 datetime64[ns]
dtype: object
以下函数可用于一维对象数组或标量以将对象硬转换为指定类型:
-
to_numeric() (转换为数值数据类型)
In [388]: m = ["1.1", 2, 3]
In [389]: pd.to_numeric(m)
Out[389]: array([1.1, 2. , 3. ])
-
to_datetime() (转换为日期和时间对象)
In [390]: import datetime
In [391]: m = ["2016-07-09", datetime.datetime(2016, 3, 2)]
In [392]: pd.to_datetime(m)
Out[392]: DatetimeIndex(['2016-07-09', '2016-03-02'], dtype='datetime64[ns]', freq=None)
-
to_timedelta() (转换为时间差对象)
In [393]: m = ["5us", pd.Timedelta("1day")]
In [394]: pd.to_timedelta(m)
Out[394]: TimedeltaIndex(['0 days 00:00:00.000005', '1 days 00:00:00'], dtype='timedelta64[ns]', freq=None)
为了强制转换,我们可以传入一个 errors 参数,该参数指定 pandas 应如何处理无法转换为所需数据类型或对象的元素。默认情况下,errors='raise',这意味着在转换过程中遇到的任何错误都将被引发。但是,如果使用 errors='coerce',则这些错误将被忽略,pandas 将有问题的元素转换为 pd.NaT(对于日期和时间差)或 np.nan(对于数值)。如果您读入的大部分数据具有所需数据类型(例如数值、日期和时间),但偶尔混杂着想要表示为缺失的非一致元素,这可能很有用:
In [395]: import datetime
In [396]: m = ["apple", datetime.datetime(2016, 3, 2)]
In [397]: pd.to_datetime(m, errors="coerce")
Out[397]: DatetimeIndex(['NaT', '2016-03-02'], dtype='datetime64[ns]', freq=None)
In [398]: m = ["apple", 2, 3]
In [399]: pd.to_numeric(m, errors="coerce")
Out[399]: array([nan, 2., 3.])
In [400]: m = ["apple", pd.Timedelta("1day")]
In [401]: pd.to_timedelta(m, errors="coerce")
Out[401]: TimedeltaIndex([NaT, '1 days'], dtype='timedelta64[ns]', freq=None)
除了对象转换, to_numeric() 还提供另一个参数 downcast,它提供了将新数据(或者已经存在的数值)向下转换为较小数据类型的选项,以节省内存:
In [402]: m = ["1", 2, 3]
In [403]: pd.to_numeric(m, downcast="integer") # smallest signed int dtype
Out[403]: array([1, 2, 3], dtype=int8)
In [404]: pd.to_numeric(m, downcast="signed") # same as 'integer'
Out[404]: array([1, 2, 3], dtype=int8)
In [405]: pd.to_numeric(m, downcast="unsigned") # smallest unsigned int dtype
Out[405]: array([1, 2, 3], dtype=uint8)
In [406]: pd.to_numeric(m, downcast="float") # smallest float dtype
Out[406]: array([1., 2., 3.], dtype=float32)
由于这些方法仅应用于一维数组、列表或标量;因此不能直接用于多维对象(例如 DataFrames)。但是,通过 apply(),我们可以有效地对每列“应用”此功能:
In [407]: import datetime
In [408]: df = pd.DataFrame([["2016-07-09", datetime.datetime(2016, 3, 2)]] * 2, dtype="O")
In [409]: df
Out[409]:
0 1
0 2016-07-09 2016-03-02 00:00:00
1 2016-07-09 2016-03-02 00:00:00
In [410]: df.apply(pd.to_datetime)
Out[410]:
0 1
0 2016-07-09 2016-03-02
1 2016-07-09 2016-03-02
In [411]: df = pd.DataFrame([["1.1", 2, 3]] * 2, dtype="O")
In [412]: df
Out[412]:
0 1 2
0 1.1 2 3
1 1.1 2 3
In [413]: df.apply(pd.to_numeric)
Out[413]:
0 1 2
0 1.1 2 3
1 1.1 2 3
In [414]: df = pd.DataFrame([["5us", pd.Timedelta("1day")]] * 2, dtype="O")
In [415]: df
Out[415]:
0 1
0 5us 1 days 00:00:00
1 5us 1 days 00:00:00
In [416]: df.apply(pd.to_timedelta)
Out[416]:
0 1
0 0 days 00:00:00.000005 1 days
1 0 days 00:00:00.000005 1 days
gotchas
在 integer 类型的数据上执行选择操作可以轻松地将数据向上转换为 floating。在不引入 nans 的情况下,将保留输入数据的数据类型。另请参见 Support for integer NA。
In [417]: dfi = df3.astype("int32")
In [418]: dfi["E"] = 1
In [419]: dfi
Out[419]:
A B C E
0 1 0 26 1
1 3 1 86 1
2 0 0 46 1
3 0 1 212 1
4 -1 -1 26 1
5 1 0 7 1
6 0 -1 184 1
7 0 0 206 1
In [420]: dfi.dtypes
Out[420]:
A int32
B int32
C int32
E int64
dtype: object
In [421]: casted = dfi[dfi > 0]
In [422]: casted
Out[422]:
A B C E
0 1.0 NaN 26 1
1 3.0 1.0 86 1
2 NaN NaN 46 1
3 NaN 1.0 212 1
4 NaN NaN 26 1
5 1.0 NaN 7 1
6 NaN NaN 184 1
7 NaN NaN 206 1
In [423]: casted.dtypes
Out[423]:
A float64
B float64
C int32
E int64
dtype: object
虽然浮点数据类型保持不变。
In [424]: dfa = df3.copy()
In [425]: dfa["A"] = dfa["A"].astype("float32")
In [426]: dfa.dtypes
Out[426]:
A float32
B float64
C float64
dtype: object
In [427]: casted = dfa[df2 > 0]
In [428]: casted
Out[428]:
A B C
0 1.047606 0.256090 26.0
1 3.497968 1.426469 86.0
2 NaN NaN 46.0
3 NaN 1.139976 212.0
4 NaN NaN 26.0
5 1.346426 0.096706 7.0
6 NaN NaN 184.0
7 NaN NaN 206.0
In [429]: casted.dtypes
Out[429]:
A float32
B float64
C float64
dtype: object
Selecting columns based on dtype
select_dtypes() 方法实现基于 dtype 对列进行子集化。
首先,我们使用各种不同数据类型创建 DataFrame:
In [430]: df = pd.DataFrame(
.....: {
.....: "string": list("abc"),
.....: "int64": list(range(1, 4)),
.....: "uint8": np.arange(3, 6).astype("u1"),
.....: "float64": np.arange(4.0, 7.0),
.....: "bool1": [True, False, True],
.....: "bool2": [False, True, False],
.....: "dates": pd.date_range("now", periods=3),
.....: "category": pd.Series(list("ABC")).astype("category"),
.....: }
.....: )
.....:
In [431]: df["tdeltas"] = df.dates.diff()
In [432]: df["uint64"] = np.arange(3, 6).astype("u8")
In [433]: df["other_dates"] = pd.date_range("20130101", periods=3)
In [434]: df["tz_aware_dates"] = pd.date_range("20130101", periods=3, tz="US/Eastern")
In [435]: df
Out[435]:
string int64 uint8 ... uint64 other_dates tz_aware_dates
0 a 1 3 ... 3 2013-01-01 2013-01-01 00:00:00-05:00
1 b 2 4 ... 4 2013-01-02 2013-01-02 00:00:00-05:00
2 c 3 5 ... 5 2013-01-03 2013-01-03 00:00:00-05:00
[3 rows x 12 columns]
数据类型如下:
In [436]: df.dtypes
Out[436]:
string object
int64 int64
uint8 uint8
float64 float64
bool1 bool
bool2 bool
dates datetime64[ns]
category category
tdeltas timedelta64[ns]
uint64 uint64
other_dates datetime64[ns]
tz_aware_dates datetime64[ns, US/Eastern]
dtype: object
select_dtypes() 有两个参数 include 和 exclude,使用它们,你可以表示“给我这些数据类型的列”(include) 和/或“给出不含这些数据类型的列”(exclude)。
例如,选择 bool 列:
In [437]: df.select_dtypes(include=[bool])
Out[437]:
bool1 bool2
0 True False
1 False True
2 True False
你也可以在 NumPy dtype hierarchy 中传递一个数据类型名:
In [438]: df.select_dtypes(include=["bool"])
Out[438]:
bool1 bool2
0 True False
1 False True
2 True False
select_dtypes() 同样支持普通数据类型。
例如,选择所有数字列和布尔列,同时排除无符号整数:
In [439]: df.select_dtypes(include=["number", "bool"], exclude=["unsignedinteger"])
Out[439]:
int64 float64 bool1 bool2 tdeltas
0 1 4.0 True False NaT
1 2 5.0 False True 1 days
2 3 6.0 True False 1 days
若要选择字符串列,你必须使用 object 数据类型:
In [440]: df.select_dtypes(include=["object"])
Out[440]:
string
0 a
1 b
2 c
若要查看 dtype 等普通 numpy.number 的所有子数据类型,你可以定义一个返回子数据类型树的函数:
In [441]: def subdtypes(dtype):
.....: subs = dtype.__subclasses__()
.....: if not subs:
.....: return dtype
.....: return [dtype, [subdtypes(dt) for dt in subs]]
.....:
所有 NumPy 数据类型都是 numpy.generic 的子类:
In [442]: subdtypes(np.generic)
Out[442]:
[numpy.generic,
[[numpy.number,
[[numpy.integer,
[[numpy.signedinteger,
[numpy.int8,
numpy.int16,
numpy.int32,
numpy.int64,
numpy.longlong,
numpy.timedelta64]],
[numpy.unsignedinteger,
[numpy.uint8,
numpy.uint16,
numpy.uint32,
numpy.uint64,
numpy.ulonglong]]]],
[numpy.inexact,
[[numpy.floating,
[numpy.float16, numpy.float32, numpy.float64, numpy.longdouble]],
[numpy.complexfloating,
[numpy.complex64, numpy.complex128, numpy.clongdouble]]]]]],
[numpy.flexible,
[[numpy.character, [numpy.bytes_, numpy.str_]],
[numpy.void, [numpy.record]]]],
numpy.bool_,
numpy.datetime64,
numpy.object_]]
pandas 也定义了类型 category 和 datetime64[ns, tz],它们没有集成到普通 NumPy 层级中,并且不会随上述函数显示出来。 |