Using Apache Kafka with Schema Registry and Avro

本指南展示了 Quarkus 应用程序如何使用 Apache Kafka、“ Avro”序列化的记录,以及连接到模式注册表(如“ Confluent Schema Registry”或“ Apicurio Registry”)。

This guide shows how your Quarkus application can use Apache Kafka, Avro serialized records, and connect to a schema registry (such as the Confluent Schema Registry or Apicurio Registry).

如果您不熟悉 Kafka 和 Quarkus 中的 Kafka,请考虑首先阅读“Using Apache Kafka with Reactive Messaging”指南。

If you are not familiar with Kafka and Kafka in Quarkus in particular, consider first going through the Using Apache Kafka with Reactive Messaging guide.

Prerequisites

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/prerequisites.adoc[]

Architecture

在本指南中,我们要实现一个 REST 资源,即“MovieResource”,它将消耗电影 DTO 并将它们放入 Kafka 主题。

In this guide we are going to implement a REST resource, namely MovieResource, that will consume movie DTOs and put them in a Kafka topic.

然后,我们将实现一个消费者,它将消耗并收集来自同一主题的消息。收集到的消息将随后通过“ Server-Sent Events”公开另一个资源“ConsumedMovieResource”。

Then, we will implement a consumer that will consume and collect messages from the same topic. The collected messages will be then exposed by another resource, ConsumedMovieResource, via Server-Sent Events.

Movies”将使用 Avro 序列化和反序列化。“Movie”的模式存储在 Apicurio Registry 中。如果您使用的是 Confluent Avro “serde”和 Confluent Schema Registry,则适用于相同概念。

The Movies will be serialized and deserialized using Avro. The schema, describing the Movie, is stored in Apicurio Registry. The same concept applies if you are using the Confluent Avro serde and Confluent Schema Registry.

Solution

我们建议您遵循接下来的部分中的说明,按部就班地创建应用程序。然而,您可以直接跳到完成的示例。

We recommend that you follow the instructions in the next sections and create the application step by step. However, you can go right to the completed example.

克隆 Git 存储库: git clone {quickstarts-clone-url},或下载 {quickstarts-archive-url}[存档]。

Clone the Git repository: git clone {quickstarts-clone-url}, or download an {quickstarts-archive-url}[archive].

解决方案位于“kafka-avro-schema-quickstartdirectory”。

The solution is located in the kafka-avro-schema-quickstart directory.

Creating the Maven Project

首先,我们需要一个新项目。使用以下命令创建一个新项目:

First, we need a new project. Create a new project with the following command:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/create-app.adoc[]

如果您使用的是 Confluent Schema Registry,则不需要“quarkus-apicurio-registry-avro”扩展。相反,您需要“quarkus-confluent-registry-avro”扩展和更多一些依赖项。有关详细信息,请参阅“Using the Confluent Schema Registry”。

If you use Confluent Schema Registry, you don’t need the quarkus-apicurio-registry-avro extension. Instead, you need the quarkus-confluent-registry-avro extension and a few more dependencies. See Using the Confluent Schema Registry for details.

Avro schema

Apache Avro 是一个数据序列化系统。数据结构使用模式进行描述。我们需要做的第一件事是创建一个描述“Movie”结构的模式。使用我们记录(Kafka 消息)的模式创建一个名为“src/main/avro/movie.avsc”的文件:

Apache Avro is a data serialization system. Data structures are described using schemas. The first thing we need to do is to create a schema describing the Movie structure. Create a file called src/main/avro/movie.avsc with the schema for our record (Kafka message):

{
  "namespace": "org.acme.kafka.quarkus",
  "type": "record",
  "name": "Movie",
  "fields": [
    {
      "name": "title",
      "type": "string"
    },
    {
      "name": "year",
      "type": "int"
    }
  ]
}

如果您使用以下方式构建项目:

If you build the project with:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/build.adoc[]

movies.avsc”将被编译为“Movie.java”文件,并放置在“target/generated-sources/avsc”目录中。

the movies.avsc will get compiled to a Movie.java file placed in the target/generated-sources/avsc directory.

查看“ Avro specification”以了解更多关于 Avro 语法和受支持类型的知识。

Take a look at the Avro specification to learn more about the Avro syntax and supported types.

使用 Quarkus 无需使用特定 Maven 插件来处理 Avro 模式,所有这些操作都将通过“quarkus-avro”扩展为您完成!

With Quarkus, there’s no need to use a specific Maven plugin to process the Avro schema, this is all done for you by the quarkus-avro extension!

如果您使用以下方式运行该项目:

If you run the project with:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/dev.adoc[]

您对模式文件所做的更改将自动应用到生成的 Java 文件中。

the changes you do to the schema file will be automatically applied to the generated Java files.

The Movie producer

定义了架构后,我们现在可以跳至实现 MovieResource

Having defined the schema, we can now jump to implementing the MovieResource.

让我们打开 MovieResource,注入一个 Movie DTO 的 Emitter,并实现一个 @POST 方法,该方法消耗 Movie 并通过 Emitter 发送它:

Let’s open the MovieResource, inject an Emitter of Movie DTO and implement a @POST method that consumes Movie and sends it through the Emitter:

package org.acme.kafka;

import org.acme.kafka.quarkus.Movie;
import org.eclipse.microprofile.reactive.messaging.Channel;
import org.eclipse.microprofile.reactive.messaging.Emitter;
import org.jboss.logging.Logger;

import jakarta.ws.rs.POST;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.core.Response;

@Path("/movies")
public class MovieResource {
    private static final Logger LOGGER = Logger.getLogger(MovieResource.class);

    @Channel("movies")
    Emitter<Movie> emitter;

    @POST
    public Response enqueueMovie(Movie movie) {
        LOGGER.infof("Sending movie %s to Kafka", movie.getTitle());
        emitter.send(movie);
        return Response.accepted().build();
    }

}

现在,我们需要将 movies 通道(Emitter 发送到此通道)map 到 Kafka 主题。为了实现这一点,编辑 application.properties 文件,并添加以下内容:

Now, we need to map the movies channel (the Emitter emits to this channel) to a Kafka topic. To achieve this, edit the application.properties file, and add the following content:

# set the connector for the outgoing channel to `smallrye-kafka`
mp.messaging.outgoing.movies.connector=smallrye-kafka

# set the topic name for the channel to `movies`
mp.messaging.outgoing.movies.topic=movies

# automatically register the schema with the registry, if not present
mp.messaging.outgoing.movies.apicurio.registry.auto-register=true

你可能已经注意到,我们没有定义 value.serializer。那是因为 Quarkus 可以 autodetect 适当的 io.apicurio.registry.serde.avro.AvroKafkaSerializer 在这里,基于 @Channel 声明、Movie 类型结构和 Apicurio 注册中心库的存在。我们仍要定义 apicurio.registry.auto-register 属性。

You might have noticed that we didn’t define the value.serializer. That’s because Quarkus can autodetect that io.apicurio.registry.serde.avro.AvroKafkaSerializer is appropriate here, based on the @Channel declaration, structure of the Movie type, and presence of the Apicurio Registry libraries. We still have to define the apicurio.registry.auto-register property.

如果您使用 Confluent Schema Registry,那么您也无需配置 value.serializer。它也会被自动检测到。Confluent Schema Registry 的 apicurio.registry.auto-register 类似物被称为 auto.register.schemas。其默认值为 true,因此在本示例中无需对其进行配置。如果您想禁用自动架构注册,可以将其显式设置为 false

If you use Confluent Schema Registry, you don’t have to configure value.serializer either. It is also detected automatically. The Confluent Schema Registry analogue of apicurio.registry.auto-register is called auto.register.schemas. It defaults to true, so it doesn’t have to be configured in this example. It can be explicitly set to false if you want to disable automatic schema registration.

The Movie consumer

因此,我们可以将包含 Movie 数据的记录写入 Kafka 中。该数据使用 Avro 序列化。现在,是时候为它们实现一个消费者了。

So, we can write records into Kafka containing our Movie data. That data is serialized using Avro. Now, it’s time to implement a consumer for them.

让我们创建一个将消费 movies-from-kafka 通道中的 Movie 消息并通过服务器端事件公开它的 ConsumedMovieResource

Let’s create ConsumedMovieResource that will consume Movie messages from the movies-from-kafka channel and will expose it via Server-Sent Events:

package org.acme.kafka;

import jakarta.enterprise.context.ApplicationScoped;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;

import org.acme.kafka.quarkus.Movie;
import org.eclipse.microprofile.reactive.messaging.Channel;
import org.jboss.resteasy.reactive.RestStreamElementType;

import io.smallrye.mutiny.Multi;

@ApplicationScoped
@Path("/consumed-movies")
public class ConsumedMovieResource {

    @Channel("movies-from-kafka")
    Multi<Movie> movies;

    @GET
    @Produces(MediaType.SERVER_SENT_EVENTS)
    @RestStreamElementType(MediaType.TEXT_PLAIN)
    public Multi<String> stream() {
        return movies.map(movie -> String.format("'%s' from %s", movie.getTitle(), movie.getYear()));
    }
}

应用程序代码的最后一部分是在 application.properties 中配置 movies-from-kafka 通道:

The last bit of the application’s code is the configuration of the movies-from-kafka channel in application.properties:

# set the connector for the incoming channel to `smallrye-kafka`
mp.messaging.incoming.movies-from-kafka.connector=smallrye-kafka

# set the topic name for the channel to `movies`
mp.messaging.incoming.movies-from-kafka.topic=movies

# disable auto-commit, Reactive Messaging handles it itself
mp.messaging.incoming.movies-from-kafka.enable.auto.commit=false

mp.messaging.incoming.movies-from-kafka.auto.offset.reset=earliest

您可能已经注意到我们没有定义 value.deserializer。这是因为 Quarkus 可以 autodetect,即 io.apicurio.registry.serde.avro.AvroKafkaDeserializer 在此处合适,具体取决于 @Channel 声明、Movie 类型的结构以及 Apicurio Registry 库的存在。我们也不必定义 apicurio.registry.use-specific-avro-reader 属性,它也会自动配置。

You might have noticed that we didn’t define the value.deserializer. That’s because Quarkus can autodetect that io.apicurio.registry.serde.avro.AvroKafkaDeserializer is appropriate here, based on the @Channel declaration, structure of the Movie type, and presence of the Apicurio Registry libraries. We don’t have to define the apicurio.registry.use-specific-avro-reader property either, that is also configured automatically.

如果您使用 Confluent Schema Registry,那么您也不必配置 value.deserializerspecific.avro.reader。它们都会自动被检测到。

If you use Confluent Schema Registry, you don’t have to configure value.deserializer or specific.avro.reader either. They are both detected automatically.

Running the application

在开发模式下启动应用程序:

Start the application in dev mode:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/dev.adoc[]

多亏了开发服务,Kafka 代理和 Apicurio Registry 实例会自动启动。有关更多详细信息,请参见 Dev Services for KafkaDev Services for Apicurio Registry

Kafka broker and Apicurio Registry instance are started automatically thanks to Dev Services. See Dev Services for Kafka and Dev Services for Apicurio Registry for more details.

您可能已经注意到我们没有在任何地方配置架构注册表 URL。这是因为 Apicurio Registry 的开发服务将 Quarkus Messaging 中的 Kafka 通道配置为使用自动启动的注册表实例。

You might have noticed that we didn’t configure the schema registry URL anywhere. This is because Dev Services for Apicurio Registry configures all Kafka channels in Quarkus Messaging to use the automatically started registry instance.

Apicurio Registry 除了其原生 API 以外,还公开了与 Confluent Schema Registry 在 API 兼容的端点。因此,这种自动配置对 Apicurio Registry serde 和 Confluent Schema Registry serde 都有效。

Apicurio Registry, in addition to its native API, also exposes an endpoint that is API-compatible with Confluent Schema Registry. Therefore, this automatic configuration works both for Apicurio Registry serde and Confluent Schema Registry serde.

但是,请注意,没有任何 Dev Services 支持可以运行 Confluent Schema Registry 本身。如果你想使用 Confluent Schema Registry 的运行中实例,请与 Kafka 代理一起配置其 URL:

However, note that there’s no Dev Services support for running Confluent Schema Registry itself. If you want to use a running instance of Confluent Schema Registry, configure its URL, together with the URL of a Kafka broker:

kafka.bootstrap.servers=PLAINTEXT://localhost:9092
mp.messaging.connector.smallrye-kafka.schema.registry.url=http://localhost:8081

在第二个终端中,使用 curl 查询 ConsumedMovieResource 资源:

In the second terminal, query the ConsumedMovieResource resource with curl:

curl -N http://localhost:8080/consumed-movies

在第三个中,发布一些电影:

In the third one, post a few movies:

curl --header "Content-Type: application/json" \
  --request POST \
  --data '{"title":"The Shawshank Redemption","year":1994}' \
  http://localhost:8080/movies

curl --header "Content-Type: application/json" \
  --request POST \
  --data '{"title":"The Godfather","year":1972}' \
  http://localhost:8080/movies

curl --header "Content-Type: application/json" \
  --request POST \
  --data '{"title":"The Dark Knight","year":2008}' \
  http://localhost:8080/movies

curl --header "Content-Type: application/json" \
  --request POST \
  --data '{"title":"12 Angry Men","year":1957}' \
  http://localhost:8080/movies

观察在第二个终端中打印的内容。您应该看到类似以下的内容:

Observe what is printed in the second terminal. You should see something along the lines of:

data:'The Shawshank Redemption' from 1994

data:'The Godfather' from 1972

data:'The Dark Knight' from 2008

data:'12 Angry Men' from 1957

Running in JVM or Native mode

在非开发或测试模式下运行时,您需要启动自己的 Kafka 代理和 Apicurio Registry。使它们运行的最简单方法是使用 docker-compose 启动适当的容器。

When not running in dev or test mode, you will need to start your own Kafka broker and Apicurio Registry. The easiest way to get them running is to use docker-compose to start the appropriate containers.

如果您使用 Confluent Schema Registry,则您已经运行了 Kafka 代理和 Confluent Schema Registry 实例并将其配置好了。您可以忽略此处的 docker-compose 说明,以及 Apicurio Registry 配置。

If you use Confluent Schema Registry, you already have a Kafka broker and Confluent Schema Registry instance running and configured. You can ignore the docker-compose instructions here, as well as the Apicurio Registry configuration.

在项目的根目录创建一个 docker-compose.yaml 文件,内容如下:

Create a docker-compose.yaml file at the root of the project with the following content:

version: '2'

services:

  zookeeper:
    image: quay.io/strimzi/kafka:0.41.0-kafka-3.7.0
    command: [
        "sh", "-c",
        "bin/zookeeper-server-start.sh config/zookeeper.properties"
    ]
    ports:
      - "2181:2181"
    environment:
      LOG_DIR: /tmp/logs

  kafka:
    image: quay.io/strimzi/kafka:0.41.0-kafka-3.7.0
    command: [
        "sh", "-c",
        "bin/kafka-server-start.sh config/server.properties --override listeners=$${KAFKA_LISTENERS} --override advertised.listeners=$${KAFKA_ADVERTISED_LISTENERS} --override zookeeper.connect=$${KAFKA_ZOOKEEPER_CONNECT}"
    ]
    depends_on:
      - zookeeper
    ports:
      - "9092:9092"
    environment:
      LOG_DIR: "/tmp/logs"
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://localhost:9092
      KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092
      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

  schema-registry:
    image: apicurio/apicurio-registry-mem:2.4.2.Final
    ports:
      - 8081:8080
    depends_on:
      - kafka
    environment:
      QUARKUS_PROFILE: prod

在启动应用程序之前,我们首先启动 Kafka 代理和 Apicurio Registry:

Before starting the application, let’s first start the Kafka broker and Apicurio Registry:

docker-compose up

要停止容器,请使用 docker-compose down。您还可以使用 docker-compose rm 清理容器。

To stop the containers, use docker-compose down. You can also clean up the containers with docker-compose rm

您可以使用以下命令构建应用程序:

You can build the application with:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/build.adoc[]

并使用以下命令在 JVM 模式中运行它:

And run it in JVM mode with:

java -Dmp.messaging.connector.smallrye-kafka.apicurio.registry.url=http://localhost:8081/apis/registry/v2 -jar target/quarkus-app/quarkus-run.jar

默认情况下,应用程序尝试连接到在 localhost:9092 侦听的 Kafka 代理。您可以使用以下命令配置引导服务器: java -Dkafka.bootstrap.servers=…​ -jar target/quarkus-app/quarkus-run.jar

By default, the application tries to connect to a Kafka broker listening at localhost:9092. You can configure the bootstrap server using: java -Dkafka.bootstrap.servers=…​ -jar target/quarkus-app/quarkus-run.jar

在命令行上指定注册表 URL 不太方便,因此您只能为 prod 配置文件添加一个配置属性:

Specifying the registry URL on the command line is not very convenient, so you can add a configuration property only for the prod profile:

%prod.mp.messaging.connector.smallrye-kafka.apicurio.registry.url=http://localhost:8081/apis/registry/v2

您可以使用以下命令构建一个本机可执行文件:

You can build a native executable with:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/build-native.adoc[]

并使用以下命令运行它:

and run it with:

./target/kafka-avro-schema-quickstart-1.0.0-SNAPSHOT-runner -Dkafka.bootstrap.servers=localhost:9092

Testing the application

如上所述,Kafka 和 Apicurio Registry 的开发服务在开发模式和测试中自动启动并配置一个 Kafka 代理和 Apicurio Registry 实例。因此,我们不必自己设置 Kafka 和 Apicurio Registry。我们只需专注于编写测试。

As mentioned above, Dev Services for Kafka and Apicurio Registry automatically start and configure a Kafka broker and Apicurio Registry instance in dev mode and for tests. Hence, we don’t have to set up Kafka and Apicurio Registry ourselves. We can just focus on writing the test.

首先,让我们将对 REST 客户端和 Awaitility 的测试依赖关系添加到构建文件中:

First, let’s add test dependencies on REST Client and Awaitility to the build file:

pom.xml
<!-- we'll use Jakarta REST Client for talking to the SSE endpoint -->
<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-rest-client</artifactId>
    <scope>test</scope>
</dependency>
<dependency>
    <groupId>org.awaitility</groupId>
    <artifactId>awaitility</artifactId>
    <scope>test</scope>
</dependency>
build.gradle
testImplementation("io.quarkus:quarkus-rest-client")
testImplementation("org.awaitility:awaitility")

在测试中,我们将循环发送电影并检查 ConsumedMovieResource 是否返回了我们发送的内容。

In the test, we will send movies in a loop and check if the ConsumedMovieResource returns what we send.

package org.acme.kafka;

import io.quarkus.test.common.WithTestResource;
import io.quarkus.test.common.http.TestHTTPResource;
import io.quarkus.test.junit.QuarkusTest;
import io.restassured.http.ContentType;
import org.hamcrest.Matchers;
import org.junit.jupiter.api.Test;

import jakarta.ws.rs.client.Client;
import jakarta.ws.rs.client.ClientBuilder;
import jakarta.ws.rs.client.WebTarget;
import jakarta.ws.rs.sse.SseEventSource;
import java.net.URI;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import static io.restassured.RestAssured.given;
import static java.util.concurrent.TimeUnit.MILLISECONDS;
import static java.util.concurrent.TimeUnit.SECONDS;
import static org.awaitility.Awaitility.await;
import static org.hamcrest.MatcherAssert.assertThat;

@QuarkusTest
public class MovieResourceTest {

    @TestHTTPResource("/consumed-movies")
    URI consumedMovies;

    @Test
    public void testHelloEndpoint() throws InterruptedException {
        // create a client for `ConsumedMovieResource` and collect the consumed resources in a list
        Client client = ClientBuilder.newClient();
        WebTarget target = client.target(consumedMovies);

        List<String> received = new CopyOnWriteArrayList<>();

        SseEventSource source = SseEventSource.target(target).build();
        source.register(inboundSseEvent -> received.add(inboundSseEvent.readData()));

        // in a separate thread, feed the `MovieResource`
        ExecutorService movieSender = startSendingMovies();

        source.open();

        // check if, after at most 5 seconds, we have at least 2 items collected, and they are what we expect
        await().atMost(5, SECONDS).until(() -> received.size() >= 2);
        assertThat(received, Matchers.hasItems("'The Shawshank Redemption' from 1994",
                "'12 Angry Men' from 1957"));
        source.close();

        // shutdown the executor that is feeding the `MovieResource`
        movieSender.shutdownNow();
        movieSender.awaitTermination(5, SECONDS);
    }

    private ExecutorService startSendingMovies() {
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        executorService.execute(() -> {
            while (true) {
                given()
                        .contentType(ContentType.JSON)
                        .body("{\"title\":\"The Shawshank Redemption\",\"year\":1994}")
                .when()
                        .post("/movies")
                .then()
                        .statusCode(202);

                given()
                        .contentType(ContentType.JSON)
                        .body("{\"title\":\"12 Angry Men\",\"year\":1957}")
                .when()
                        .post("/movies")
                .then()
                        .statusCode(202);

                try {
                    Thread.sleep(200L);
                } catch (InterruptedException e) {
                    break;
                }
            }
        });
        return executorService;
    }

}

我们修改了与该项目一起生成的 MovieResourceTest。此测试类具有一个子类 NativeMovieResourceIT,它针对本机可执行文件运行相同的测试。要运行它,请执行:

We modified the MovieResourceTest that was generated together with the project. This test class has a subclass, NativeMovieResourceIT, that runs the same test against the native executable. To run it, execute:

Unresolved directive in kafka-schema-registry-avro.adoc - include::{includes}/devtools/build-native.adoc[]

Manual setup

如果我们无法使用开发服务并希望手动启动 Kafka 代理和 Apicurio Registry 实例,我们将定义一个 QuarkusTestResourceLifecycleManager

If we couldn’t use Dev Services and wanted to start a Kafka broker and Apicurio Registry instance manually, we would define a QuarkusTestResourceLifecycleManager.

pom.xml
<dependency>
    <groupId>io.strimzi</groupId>
    <artifactId>strimzi-test-container</artifactId>
    <version>0.105.0</version>
    <scope>test</scope>
    <exclusions>
        <exclusion>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
        </exclusion>
    </exclusions>
</dependency>
build.gradle
testImplementation("io.strimzi:strimzi-test-container:0.105.0") {
    exclude group: "org.apache.logging.log4j", module: "log4j-core"
}
package org.acme.kafka;

import java.util.HashMap;
import java.util.Map;

import org.testcontainers.containers.GenericContainer;

import io.quarkus.test.common.QuarkusTestResourceLifecycleManager;
import io.strimzi.StrimziKafkaContainer;

public class KafkaAndSchemaRegistryTestResource implements QuarkusTestResourceLifecycleManager {

    private final StrimziKafkaContainer kafka = new StrimziKafkaContainer();

    private GenericContainer<?> registry;

    @Override
    public Map<String, String> start() {
        kafka.start();
        registry = new GenericContainer<>("apicurio/apicurio-registry-mem:2.4.2.Final")
                .withExposedPorts(8080)
                .withEnv("QUARKUS_PROFILE", "prod");
        registry.start();
        Map<String, String> properties = new HashMap<>();
        properties.put("mp.messaging.connector.smallrye-kafka.apicurio.registry.url",
                "http://" + registry.getHost() + ":" + registry.getMappedPort(8080) + "/apis/registry/v2");
        properties.put("kafka.bootstrap.servers", kafka.getBootstrapServers());
        return properties;
    }

    @Override
    public void stop() {
        registry.stop();
        kafka.stop();
    }
}
@QuarkusTest
@WithTestResource(KafkaAndSchemaRegistryTestResource.class)
public class MovieResourceTest {
    ...
}

Using compatible versions of the Apicurio Registry

quarkus-apicurio-registry-avro 扩展依赖于 Apicurio Registry 客户端的最新版本,并且大多数版本的 Apicurio Registry 服务器和客户端都向后兼容。对于某些版本,您需要确保 Serdes 使用的客户端与服务器兼容。

The quarkus-apicurio-registry-avro extension depends on recent versions of Apicurio Registry client, and most versions of Apicurio Registry server and client are backwards compatible. For some you need to make sure that the client used by Serdes is compatible with the server.

例如,如果您将 Apicurio dev 服务的映像名称设置为使用版本 2.1.5.Final

For example, with Apicurio dev service if you set the image name to use version 2.1.5.Final:

quarkus.apicurio-registry.devservices.image-name=quay.io/apicurio/apicurio-registry-mem:2.1.5.Final

您需要确保 apicurio-registry-serdes-avro-serde 依赖项和 REST 客户端 apicurio-common-rest-client-vertx 依赖项都设置为兼容版本:

You need to make sure that apicurio-registry-serdes-avro-serde dependency and the REST client apicurio-common-rest-client-vertx dependency are set to compatible versions:

pom.xml
<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-apicurio-registry-avro</artifactId>
    <exclusions>
        <exclusion>
            <groupId>io.apicurio</groupId>
            <artifactId>apicurio-common-rest-client-vertx</artifactId>
        </exclusion>
        <exclusion>
            <groupId>io.apicurio</groupId>
            <artifactId>apicurio-registry-serdes-avro-serde</artifactId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>io.apicurio</groupId>
    <artifactId>apicurio-registry-client</artifactId>
    <version>2.1.5.Final</version>
</dependency>
<dependency>
    <groupId>io.apicurio</groupId>
    <artifactId>apicurio-registry-common</artifactId>
    <version>2.1.5.Final</version>
</dependency>
<dependency>
    <groupId>io.apicurio</groupId>
    <artifactId>apicurio-registry-serdes-avro-serde</artifactId>
    <version>2.1.5.Final</version>
    <exclusions>
        <exclusion>
            <groupId>io.apicurio</groupId>
            <artifactId>apicurio-common-rest-client-jdk</artifactId>
        </exclusion>
        <exclusion>
            <groupId>io.apicurio</groupId>
            <artifactId>apicurio-registry-client</artifactId>
        </exclusion>
        <exclusion>
            <groupId>io.apicurio</groupId>
            <artifactId>apicurio-registry-common</artifactId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>io.apicurio</groupId>
    <artifactId>apicurio-common-rest-client-vertx</artifactId>
    <version>0.1.5.Final</version>
</dependency>
build.gradle
dependencies {
    implementation(platform("{quarkus-platform-groupid}:quarkus-bom:2.12.3.Final"))

    ...

    implementation("io.quarkus:quarkus-apicurio-registry-avro")
    implementation("io.apicurio:apicurio-registry-serdes-avro-serde") {
        exclude group: "io.apicurio", module: "apicurio-common-rest-client-jdk"
        exclude group: "io.apicurio", module: "apicurio-registry-client"
        exclude group: "io.apicurio", module: "apicurio-registry-common"
        version {
            strictly "2.1.5.Final"
        }
    }
    implementation("io.apicurio:apicurio-registry-client") {
        version {
            strictly "2.1.5.Final"
        }
    }
    implementation("io.apicurio:apicurio-registry-common") {
        version {
            strictly "2.1.5.Final"
        }
    }
    implementation("io.apicurio:apicurio-common-rest-client-vertx") {
        version {
            strictly "0.1.5.Final"
        }
    }
}

apicurio-registry-clientapicurio-common-rest-client-vertx 的已知先前兼容版本如下所列:

Known previous compatible versions for apicurio-registry-client and apicurio-common-rest-client-vertx are the following

  • apicurio-registry-client 2.1.5.Final with apicurio-common-rest-client-vertx 0.1.5.Final

  • apicurio-registry-client 2.3.1.Final with apicurio-common-rest-client-vertx 0.1.13.Final

Using the Confluent Schema Registry

如果您想使用 Confluent Schema Registry,则需要 quarkus-confluent-registry-avro 扩展,而不是 quarkus-apicurio-registry-avro 扩展。此外,您需要向 pom.xml / build.gradle 文件中添加一些依赖项和一个自定义 Maven 存储库:

If you want to use the Confluent Schema Registry, you need the quarkus-confluent-registry-avro extension, instead of the quarkus-apicurio-registry-avro extension. Also, you need to add a few dependencies and a custom Maven repository to your pom.xml / build.gradle file:

pom.xml
<dependencies>
    ...
    <!-- the extension -->
    <dependency>
        <groupId>io.quarkus</groupId>
        <artifactId>quarkus-confluent-registry-avro</artifactId>
    </dependency>
    <!-- Confluent registry libraries use Jakarta REST client -->
    <dependency>
        <groupId>io.quarkus</groupId>
        <artifactId>quarkus-rest-client</artifactId>
    </dependency>
    <dependency>
        <groupId>io.confluent</groupId>
        <artifactId>kafka-avro-serializer</artifactId>
        <version>7.2.0</version>
        <exclusions>
            <exclusion>
                <groupId>jakarta.ws.rs</groupId>
                <artifactId>jakarta.ws.rs-api</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
</dependencies>

<repositories>
    <!-- io.confluent:kafka-avro-serializer is only available from this repository: -->
    <repository>
        <id>confluent</id>
        <url>https://packages.confluent.io/maven/</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>
build.gradle
repositories {
    ...

    maven {
        url "https://packages.confluent.io/maven/"
    }
}

dependencies {
    ...

    implementation("io.quarkus:quarkus-confluent-registry-avro")

    // Confluent registry libraries use Jakarta REST client
    implementation("io.quarkus:quarkus-rest-client")

    implementation("io.confluent:kafka-avro-serializer:7.2.0") {
        exclude group: "jakarta.ws.rs", module: "jakarta.ws.rs-api"
    }
}

在 JVM 模式下,可以使用任何版本的 io.confluent:kafka-avro-serializer。在原生模式中,Quarkus 支持以下版本: 6.2.x7.0.x7.1.x7.2.x7.3.x

In JVM mode, any version of io.confluent:kafka-avro-serializer can be used. In native mode, Quarkus supports the following versions: 6.2.x, 7.0.x, 7.1.x, 7.2.x, 7.3.x.

对于版本 7.4.x7.5.x,由于 Confluent Schema Serializer 出现问题,因此您需要添加另一个依赖项:

For version 7.4.x and 7.5.x, due to an issue with the Confluent Schema Serializer, you need to add another dependency:

pom.xml
<dependency>
    <groupId>com.fasterxml.jackson.dataformat</groupId>
    <artifactId>jackson-dataformat-csv</artifactId>
</dependency>
build.gradle
dependencies {
    implementation("com.fasterxml.jackson.dataformat:jackson-dataformat-csv")
}

对于任何其他版本,可能需要调整原生配置。

For any other versions, the native configuration may need to be adjusted.

Avro code generation details

在本指南中,我们使用 Quarkus 代码生成机制从 Avro 模式生成 Java 文件。

In this guide we used the Quarkus code generation mechanism to generate Java files from Avro schema.

实际上,该机制使用 org.apache.avro:avro-compiler

Under the hood, the mechanism uses org.apache.avro:avro-compiler.

您可以使用以下配置属性来更改其工作方式:

You can use the following configuration properties to alter how it works:

  • avro.codegen.[avsc|avdl|avpr].imports - a list of files or directories that should be compiled first thus making them importable by subsequently compiled schemas. Note that imported files should not reference each other. All paths should be relative to the src/[main|test]/avro directory, or avro sub-directory in any source directory configured by the build system. Passed as a comma-separated list.

  • avro.codegen.stringType - the Java type to use for Avro strings. May be one of CharSequence, String or Utf8. Defaults to String

  • avro.codegen.createOptionalGetters - enables generating the getOptional…​ methods that return an Optional of the requested type. Defaults to false

  • avro.codegen.enableDecimalLogicalType - determines whether to use Java classes for decimal types, defaults to false

  • avro.codegen.createSetters - determines whether to create setters for the fields of the record. Defaults to false

  • avro.codegen.gettersReturnOptional - enables generating get…​ methods that return an Optional of the requested type. Defaults to false

  • avro.codegen.optionalGettersForNullableFieldsOnly, works in conjunction with gettersReturnOptional option. If it is set, Optional getters will be generated only for fields that are nullable. If the field is mandatory, regular getter will be generated. Defaults to false

Further reading