Azure OpenAI Embeddings
Azure 的 OpenAI 扩展了 OpenAI 的功能,为各种任务提供了安全的文本生成和嵌入计算模型:
Azure’s OpenAI extends the OpenAI capabilities, offering safe text generation and Embeddings computation models for various task:
-
Similarity embeddings are good at capturing semantic similarity between two or more pieces of text.
-
Text search embeddings help measure whether long documents are relevant to a short query.
-
Code search embeddings are useful for embedding code snippets and embedding natural language search queries.
Azure OpenAI 嵌入依赖于“余弦相似性”来计算文档和查询之间的相似性。
The Azure OpenAI embeddings rely on cosine similarity
to compute similarity between documents and a query.
Prerequisites
从 Azure Portal 上的 Azure OpenAI 服务部分中获取 Azure OpenAI endpoint
和 api-key
。
Obtain your Azure OpenAI endpoint
and api-key
from the Azure OpenAI Service section on the Azure Portal.
Spring AI 定义了一个名为 spring.ai.azure.openai.api-key
的配置属性,你应该将其设置为从 Azure 获得的 API Key
的值。还存在一个名为 spring.ai.azure.openai.endpoint
的配置属性,你应该将其设置为在 Azure 中配置模型时获得的端点 URL。
Spring AI defines a configuration property named spring.ai.azure.openai.api-key
that you should set to the value of the API Key
obtained from Azure.
There is also a configuration property named spring.ai.azure.openai.endpoint
that you should set to the endpoint URL obtained when provisioning your model in Azure.
导出环境变量是一种设置这些配置属性的方法:
Exporting environment variables is one way to set these configuration properties:
export SPRING_AI_AZURE_OPENAI_API_KEY=<INSERT KEY HERE>
export SPRING_AI_AZURE_OPENAI_ENDPOINT=<INSERT ENDPOINT URL HERE>
Add Repositories and BOM
Spring AI 工件发布在 Spring Milestone 和 Snapshot 存储库中。有关将这些存储库添加到你的构建系统的说明,请参阅 Repositories 部分。
Spring AI artifacts are published in Spring Milestone and Snapshot repositories. Refer to the Repositories section to add these repositories to your build system.
为了帮助进行依赖项管理,Spring AI 提供了一个 BOM(物料清单)以确保在整个项目中使用一致版本的 Spring AI。有关将 Spring AI BOM 添加到你的构建系统的说明,请参阅 Dependency Management 部分。
To help with dependency management, Spring AI provides a BOM (bill of materials) to ensure that a consistent version of Spring AI is used throughout the entire project. Refer to the Dependency Management section to add the Spring AI BOM to your build system.
Auto-configuration
Spring AI 为 Azure OpenAI 嵌入客户端提供了 Spring Boot 自动配置。要启用它,请将以下依赖项添加到项目的 Maven pom.xml
文件:
Spring AI provides Spring Boot auto-configuration for the Azure OpenAI Embedding Client.
To enable it add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai-spring-boot-starter</artifactId>
</dependency>
或添加到 Gradle build.gradle
构建文件中。
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-azure-openai-spring-boot-starter'
}
|
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Embedding Properties
前缀 spring.ai.azure.openai
是用于配置与 Azure OpenAI 连接的属性前缀。
The prefix spring.ai.azure.openai
is the property prefix to configure the connection to Azure OpenAI.
Property | Description | Default |
---|---|---|
spring.ai.azure.openai.api-key |
The Key from Azure AI OpenAI |
- |
spring.ai.azure.openai.endpoint |
The endpoint from the Azure AI OpenAI |
- |
前缀 spring.ai.azure.openai.embeddings
是为 Azure OpenAI 配置 EmbeddingClient
实现的属性前缀
The prefix spring.ai.azure.openai.embeddings
is the property prefix that configures the EmbeddingClient
implementation for Azure OpenAI
Property | Description | Default |
---|---|---|
spring.ai.azure.openai.embedding.enabled |
Enable Azure OpenAI embedding client. |
true |
spring.ai.azure.openai.embedding.metadata-mode |
Document content extraction mode |
EMBED |
spring.ai.azure.openai.embedding.options.deployment-name |
This is the value of the 'Deployment Name' as presented in the Azure AI Portal |
text-embedding-ada-002 |
spring.ai.azure.openai.embedding.options.user |
An identifier for the caller or end user of the operation. This may be used for tracking or rate-limiting purposes. |
- |
以 |
All properties prefixed with |
Embedding Options
AzureOpenAiEmbeddingOptions
提供嵌入请求的配置信息。AzureOpenAiEmbeddingOptions
提供一个生成该选项的构建器。
The AzureOpenAiEmbeddingOptions
provides the configuration information for the embedding requests.
The AzureOpenAiEmbeddingOptions
offers a builder to create the options.
在启动时,使用 AzureOpenAiEmbeddingClient
构造函数设置用于所有嵌入请求的默认选项。在运行时,可以通过将 AzureOpenAiEmbeddingOptions
实例与你的 EmbeddingRequest
请求一起传递来覆盖默认选项。
At start time use the AzureOpenAiEmbeddingClient
constructor to set the default options used for all embedding requests.
At run-time you can override the default options, by passing a AzureOpenAiEmbeddingOptions
instance with your to the EmbeddingRequest
request.
例如,要覆盖特定请求的默认模型名称:
For example to override the default model name for a specific request:
EmbeddingResponse embeddingResponse = embeddingClient.call(
new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),
AzureOpenAiEmbeddingOptions.builder()
.withModel("Different-Embedding-Model-Deployment-Name")
.build()));
Sample Code
这将创建一个 EmbeddingClient
实现,你可以将其注入到你的类中。这里有一个简单的 @Controller
类的示例,它使用 EmbeddingClient
实现。
This will create a EmbeddingClient
implementation that you can inject into your class.
Here is an example of a simple @Controller
class that uses the EmbeddingClient
implementation.
spring.ai.azure.openai.api-key=YOUR_API_KEY
spring.ai.azure.openai.endpoint=YOUR_ENDPOINT
spring.ai.azure.openai.embedding.options.model=text-embedding-ada-002
@RestController
public class EmbeddingController {
private final EmbeddingClient embeddingClient;
@Autowired
public EmbeddingController(EmbeddingClient embeddingClient) {
this.embeddingClient = embeddingClient;
}
@GetMapping("/ai/embedding")
public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
EmbeddingResponse embeddingResponse = this.embeddingClient.embedForResponse(List.of(message));
return Map.of("embedding", embeddingResponse);
}
}
Manual Configuration
如果你不想使用 Spring Boot 自动配置,则可以手动在应用程序中配置 AzureOpenAiEmbeddingClient
。为此,将 spring-ai-azure-openai
依赖项添加到项目的 Maven pom.xml
文件中:
If you prefer not to use the Spring Boot auto-configuration, you can manually configure the AzureOpenAiEmbeddingClient
in your application.
For this add the spring-ai-azure-openai
dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai</artifactId>
</dependency>
或添加到 Gradle build.gradle
构建文件中。
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-azure-openai'
}
|
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
|
The |
接下来,创建一个 AzureOpenAiEmbeddingClient
实例,并使用它来计算两个输入文本之间的相似度:
Next, create an AzureOpenAiEmbeddingClient
instance and use it to compute the similarity between two input texts:
var openAIClient = OpenAIClientBuilder()
.credential(new AzureKeyCredential(System.getenv("AZURE_OPENAI_API_KEY")))
.endpoint(System.getenv("AZURE_OPENAI_ENDPOINT"))
.buildClient();
var embeddingClient = new AzureOpenAiEmbeddingClient(openAIClient)
.withDefaultOptions(AzureOpenAiEmbeddingOptions.builder()
.withModel("text-embedding-ada-002")
.withUser("user-6")
.build());
EmbeddingResponse embeddingResponse = embeddingClient
.embedForResponse(List.of("Hello World", "World is big and salvation is near"));
|
the |