Mistral AI Embeddings
Spring AI 支持 Mistral AI 的文本词嵌入模型。词嵌入是文本的向量表示,通过其在高维矢量空间中的位置来捕获段落的语义含义。Mistral AI 词嵌入 API 为文本提供尖端的最新词嵌入,可用于许多 NLP 任务。
Spring AI supports the Mistral AI’s text embeddings models. Embeddings are vectorial representations of text that capture the semantic meaning of paragraphs through their position in a high dimensional vector space. Mistral AI Embeddings API offers cutting-edge, state-of-the-art embeddings for text, which can be used for many NLP tasks.
Prerequisites
你需要使用 MistralAI 创建一个 API,以访问 MistralAI 词嵌入模型。
You will need to create an API with MistralAI to access MistralAI embeddings models.
在 ` MistralAI registration page` 创建一个帐户并在 ` API Keys page` 上生成令牌。Spring AI 项目定义了一个名为 spring.ai.mistralai.api-key
的配置属性,您应该将其设置为从 console.mistral.ai 获得的 API Key
的值。导出环境变量是设置该配置属性的一种方法:
Create an account at MistralAI registration page and generate the token on the API Keys page.
The Spring AI project defines a configuration property named spring.ai.mistralai.api-key
that you should set to the value of the API Key
obtained from console.mistral.ai.
Exporting an environment variable is one way to set that configuration property:
export SPRING_AI_MISTRALAI_API_KEY=<INSERT KEY HERE>
Add Repositories and BOM
Spring AI 工件发布在 Spring Milestone 和 Snapshot 存储库中。有关将这些存储库添加到你的构建系统的说明,请参阅 Repositories 部分。
Spring AI artifacts are published in Spring Milestone and Snapshot repositories. Refer to the Repositories section to add these repositories to your build system.
为了帮助进行依赖项管理,Spring AI 提供了一个 BOM(物料清单)以确保在整个项目中使用一致版本的 Spring AI。有关将 Spring AI BOM 添加到你的构建系统的说明,请参阅 Dependency Management 部分。
To help with dependency management, Spring AI provides a BOM (bill of materials) to ensure that a consistent version of Spring AI is used throughout the entire project. Refer to the Dependency Management section to add the Spring AI BOM to your build system.
Auto-configuration
Spring AI 为 MistralAI 词嵌入客户端提供 Spring Boot 自动配置。要启用它,请将以下依赖项添加到项目的 Maven pom.xml
文件:
Spring AI provides Spring Boot auto-configuration for the MistralAI Embedding Client.
To enable it add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mistral-ai-spring-boot-starter</artifactId>
</dependency>
或添加到 Gradle build.gradle
构建文件中。
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-mistral-ai-spring-boot-starter'
}
|
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Embedding Properties
Retry Properties
spring.ai.retry
前缀用作允许你为 Mistral AI 词嵌入客户端配置重试机制的属性前缀。
The prefix spring.ai.retry
is used as the property prefix that lets you configure the retry mechanism for the Mistral AI Embedding client.
Property | Description | Default |
---|---|---|
spring.ai.retry.max-attempts |
Maximum number of retry attempts. |
10 |
spring.ai.retry.backoff.initial-interval |
Initial sleep duration for the exponential backoff policy. |
2 sec. |
spring.ai.retry.backoff.multiplier |
Backoff interval multiplier. |
5 |
spring.ai.retry.backoff.max-interval |
Maximum backoff duration. |
3 min. |
spring.ai.retry.on-client-errors |
If false, throw a NonTransientAiException, and do not attempt retry for |
false |
spring.ai.retry.exclude-on-http-codes |
List of HTTP status codes that should not trigger a retry (e.g. to throw NonTransientAiException). |
empty |
Connection Properties
spring.ai.mistralai
用作允许你连接到 MistralAI 的属性前缀。
The prefix spring.ai.mistralai
is used as the property prefix that lets you connect to MistralAI.
Property | Description | Default |
---|---|---|
spring.ai.mistralai.base-url |
The URL to connect to |
[role="bare"]https://api.mistral.ai |
spring.ai.mistralai.api-key |
The API Key |
- |
Configuration Properties
spring.ai.mistralai.embedding
前缀是为 MistralAI 配置 EmbeddingClient
实现的属性前缀。
The prefix spring.ai.mistralai.embedding
is property prefix that configures the EmbeddingClient
implementation for MistralAI.
Property | Description | Default |
---|---|---|
spring.ai.mistralai.embedding.enabled |
Enable OpenAI embedding client. |
true |
spring.ai.mistralai.embedding.base-url |
Optional overrides the spring.ai.mistralai.base-url to provide embedding specific url |
- |
spring.ai.mistralai.embedding.api-key |
Optional overrides the spring.ai.mistralai.api-key to provide embedding specific api-key |
- |
spring.ai.mistralai.embedding.metadata-mode |
Document content extraction mode. |
EMBED |
spring.ai.mistralai.embedding.options.model |
The model to use |
mistral-embed |
spring.ai.mistralai.embedding.options.encodingFormat |
The format to return the embeddings in. Can be either float or base64. |
- |
您可以覆盖 |
You can override the common |
所有前缀为 |
All properties prefixed with |
Embedding Options
MistralAiEmbeddingOptions.java 提供 MistralAI 配置,例如使用该模型等。
The MistralAiEmbeddingOptions.java provides the MistralAI configurations, such as the model to use and etc.
还可以使用 spring.ai.mistralai.embedding.options
属性配置默认选项。
The default options can be configured using the spring.ai.mistralai.embedding.options
properties as well.
在启动时,使用 MistralAiEmbeddingClient
构造函数设置用于所有嵌入式请求的默认选项。在运行时,你可以使用 EmbeddingRequest
中的 MistralAiEmbeddingOptions
实例覆盖默认选项。
At start-time use the MistralAiEmbeddingClient
constructor to set the default options used for all embedding requests.
At run-time you can override the default options, using a MistralAiEmbeddingOptions
instance as part of your EmbeddingRequest
.
例如,要覆盖特定请求的默认模型名称:
For example to override the default model name for a specific request:
EmbeddingResponse embeddingResponse = embeddingClient.call(
new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),
MistralAiEmbeddingOptions.builder()
.withModel("Different-Embedding-Model-Deployment-Name")
.build()));
Sample Controller (Auto-configuration)
这将创建一个 EmbeddingClient
实现,你可以将其注入到你的类中。这里有一个简单的 @Controller
类的示例,它使用 EmbeddingClient
实现。
This will create a EmbeddingClient
implementation that you can inject into your class.
Here is an example of a simple @Controller
class that uses the EmbeddingClient
implementation.
spring.ai.mistralai.api-key=YOUR_API_KEY
spring.ai.mistralai.embedding.options.model=mistral-embed
@RestController
public class EmbeddingController {
private final EmbeddingClient embeddingClient;
@Autowired
public EmbeddingController(EmbeddingClient embeddingClient) {
this.embeddingClient = embeddingClient;
}
@GetMapping("/ai/embedding")
public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
var embeddingResponse = this.embeddingClient.embedForResponse(List.of(message));
return Map.of("embedding", embeddingResponse);
}
}
Manual Configuration
如果你没有使用 Spring Boot,你可以手动配置 OpenAI Embedding 客户端。为此,将 spring-ai-mistralai
依赖项添加到项目 Maven pom.xml
文件中:
If you are not using Spring Boot, you can manually configure the OpenAI Embedding Client.
For this add the spring-ai-mistralai
dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mistralai</artifactId>
</dependency>
或添加到 Gradle build.gradle
构建文件中。
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-mistralai'
}
|
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
|
The |
接下来,创建一个 MistralAiEmbeddingClient
实例,并使用它来计算两个输入文本之间的相似性:
Next, create an MistralAiEmbeddingClient
instance and use it to compute the similarity between two input texts:
var mistralAiApi = new MistralAiApi(System.getenv("MISTRAL_AI_API_KEY"));
var embeddingClient = new MistralAiEmbeddingClient(mistralAiApi,
MistralAiEmbeddingOptions.builder()
.withModel("mistral-embed")
.withEncodingFormat("float")
.build());
EmbeddingResponse embeddingResponse = embeddingClient
.embedForResponse(List.of("Hello World", "World is big and salvation is near"));
MistralAiEmbeddingOptions
提供了嵌入式请求的配置信息。该选项类提供了 builder()
以便于创建选项。
The MistralAiEmbeddingOptions
provides the configuration information for the embedding requests.
The options class offers a builder()
for easy options creation.