Automata Theory 简明教程

Chomsky Normal Form

如果产生式满足以下形式,则一个 CFG 处于乔姆斯基范式−

  1. A → a

  2. A → BC

  3. S → ε

其中 A、B 和 C 是非终结符,而 a 是终结符。

Algorithm to Convert into Chomsky Normal Form −

Step 1 − 如果起始符号 S 出现在某个右侧,创建一个新的起始符号 S’ 和一个新的产生式 S’→ S

Step 2 − 删除空产生式。(使用前面讨论的空产生式消除算法)

Step 3 − 删除单位产生式。(使用前面讨论的单位产生式消除算法)

Step 4 − 替换每个将 n > 2 替换成 A → B1C 产生的 A → B1…Bn ,将 C → B2 …Bn 替换成 A → B1C 。对右侧有两个或更多符号的每个产生式重复此步骤。

Step 5 − 如果任何产生式的右侧形式为 A → aB ,其中 a 是一个终结符且 A, B 是非终结符,那么该产生式被替换为 A → XBX → a 。对形式为 A → aB 的每个产生式重复此步骤。

Problem

将以下 CFG 转换为 CNF

S → ASA | aB, A → B | S, B → b | ε

Solution

(1) 因为 S 出现在 R.H.S 中,我们添加一个新状态 S0S0→S 被添加到产生式集中并变为 −

S0→S, S→ ASA | aB, A → B | S, B → b | ∈

(2) 现在我们将删除空发生式 −

B → ∈和 A → ∈

在删除了 B → ε 后,产生式集变为 −

S0→S, S→ ASA | aB | a, A → B | S | ∈, B → b

在删除了 A → ∈ 后,产生式集变为 −

S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b

(3) 现在我们将删除单元产生式。

在删除了 S → S 后,产生式集变为 −

S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b

在删除了 S0→ S 后,产生式集变为 −

S0→ ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → B | S, B → b

在删除了 A→ B 后,产生式集变为 −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → S | b

B→b

移除 A→S 后,产生式集合变为 −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A→b |ASA | aB | a | AS | SA,B→b

(4) 现在我们将寻找 R.H.S 中有多个变量的项

此处,S0→ASA、S→ASA、A→ASA 违反了 R.H.S 中的两个非终结符。

因此,我们将应用步骤 4 和步骤 5 来获得以下在 CNF 中的最终产生式集合 −

S0→AX | aB | a | AS | SA

S→AX | aB | a | AS | SA

A→b |AX | aB | a | AS | SA

B→b

X→SA

(5) 我们必须更改产生式 S0→aB、S→aB、A→aB

最终产生式集合变为 −

S0→AX | YB | a | AS | SA

S→AX | YB | a | AS | SA

A→b A→b |AX | YB | a | AS | SA

B→b

X→SA

Y→a