Big Data Analytics 简明教程
Big Data Analytics - Statistical Methods
在分析数据时,可以采用统计方法。执行基本分析所需的基本工具为:
-
Correlation analysis
-
Analysis of Variance
-
Hypothesis Testing
在处理大型数据集时,这些方法不涉及问题,因为这些方法在计算上并不密集,相关性分析除外。在这种情况下,始终可以抽取样本,并且结果应该是稳健的。
Correlation Analysis
相关性分析旨在找出数值变量之间的线性关系。这可能在不同情况下有用。一个常见的用途是探索性数据分析,在本书的第 16.0.2 节中有一个基本的示例。首先,所述示例中使用的相关性指标基于 Pearson coefficient 。但是,还有另一种不受异常值影响的有趣相关性指标。该指标称为 Spearman 相关性。
与 Pearson 方法相比, spearman correlation 指标对离群值的存在更鲁棒,当数据不呈正态分布时,它能更好地估计数值变量之间的线性关系。
library(ggplot2)
# Select variables that are interesting to compare pearson and spearman
correlation methods.
x = diamonds[, c('x', 'y', 'z', 'price')]
# From the histograms we can expect differences in the correlations of both
metrics.
# In this case as the variables are clearly not normally distributed, the
spearman correlation
# is a better estimate of the linear relation among numeric variables.
par(mfrow = c(2,2))
colnm = names(x)
for(i in 1:4) {
hist(x[[i]], col = 'deepskyblue3', main = sprintf('Histogram of %s', colnm[i]))
}
par(mfrow = c(1,1))
从下图中的直方图中,我们可以期望两个指标的相关性存在差异。在这种情况下,由于变量明显不呈正态分布,因此 Spearman 相关性是数值变量之间线性关系的更好估计。
要计算 R 中的相关性,请打开包含此代码部分的文件 bda/part2/statistical_methods/correlation/correlation.R 。
## Correlation Matrix - Pearson and spearman
cor_pearson <- cor(x, method = 'pearson')
cor_spearman <- cor(x, method = 'spearman')
### Pearson Correlation
print(cor_pearson)
# x y z price
# x 1.0000000 0.9747015 0.9707718 0.8844352
# y 0.9747015 1.0000000 0.9520057 0.8654209
# z 0.9707718 0.9520057 1.0000000 0.8612494
# price 0.8844352 0.8654209 0.8612494 1.0000000
### Spearman Correlation
print(cor_spearman)
# x y z price
# x 1.0000000 0.9978949 0.9873553 0.9631961
# y 0.9978949 1.0000000 0.9870675 0.9627188
# z 0.9873553 0.9870675 1.0000000 0.9572323
# price 0.9631961 0.9627188 0.9572323 1.0000000
Chi-squared Test
卡方检验允许我们测试两个随机变量是否独立。这意味着每个变量的概率分布不影响另一个变量。为了在 R 中评估检验,我们首先需要创建一个列联表,然后将该表传递给 chisq.test R 函数。
例如,让我们检查一下 diamond 数据集中变量 cut 和 color 之间是否存在关联。该检验的正式定义如下:
-
H0:变量 cut 和 diamond 是独立的
-
H1:变量切工和钻石并非独立
从这两个变量的名称来判断,我们会假设这两个变量之间存在一种关系,但检验可以给出一个客观“规则”,说明这个结果的重要性程度。
在以下代码片段中,我们发现检验的 p 值为 2.2e-16,在实际应用中该值为零。在运行 Monte Carlo simulation 检验之后,我们发现 p 值为 0.0004998,仍然比阈值 0.05 低。此结果意即我们拒绝原假设 (H0),我们相信变量 cut 和 color 不是独立的。
library(ggplot2)
# Use the table function to compute the contingency table
tbl = table(diamonds$cut, diamonds$color)
tbl
# D E F G H I J
# Fair 163 224 312 314 303 175 119
# Good 662 933 909 871 702 522 307
# Very Good 1513 2400 2164 2299 1824 1204 678
# Premium 1603 2337 2331 2924 2360 1428 808
# Ideal 2834 3903 3826 4884 3115 2093 896
# In order to run the test we just use the chisq.test function.
chisq.test(tbl)
# Pearson’s Chi-squared test
# data: tbl
# X-squared = 310.32, df = 24, p-value < 2.2e-16
# It is also possible to compute the p-values using a monte-carlo simulation
# It's needed to add the simulate.p.value = TRUE flag and the amount of
simulations
chisq.test(tbl, simulate.p.value = TRUE, B = 2000)
# Pearson’s Chi-squared test with simulated p-value (based on 2000 replicates)
# data: tbl
# X-squared = 310.32, df = NA, p-value = 0.0004998
T-test
t-test 的目的是评估数字变量 # 在标称变量的不同组之间的分布是否有所不同。为了展示这一点,我将选择因子变量切工的佳级和理想级,然后我们将比较这两个组之间的数字变量值。
data = diamonds[diamonds$cut %in% c('Fair', 'Ideal'), ]
data$cut = droplevels.factor(data$cut) # Drop levels that aren’t used from the
cut variable
df1 = data[, c('cut', 'price')]
# We can see the price means are different for each group
tapply(df1$price, df1$cut, mean)
# Fair Ideal
# 4358.758 3457.542
t 检验在 R 中以 t.test 函数实现。公式接口到 t.test 是使用它的最简单方法,其原理是按组变量对数字变量进行解释。
例如: t.test(numeric_variable ~ group_variable, data = data) 。在上一个示例中, numeric_variable 是 price , group_variable 是 cut 。
从统计角度看,我们检验在两组之间数字变量的分布是否存在差异。从形式上讲,假设检验描述为一个原假设 (H0) 和一个备择假设 (H1)。
-
H0:佳级和理想级组之间价格变量的分布没有差异
-
H1:佳级和理想级组之间价格变量的分布有差异
以下内容可以用 R 中的如下代码实现:
t.test(price ~ cut, data = data)
# Welch Two Sample t-test
#
# data: price by cut
# t = 9.7484, df = 1894.8, p-value < 2.2e-16
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
# 719.9065 1082.5251
# sample estimates:
# mean in group Fair mean in group Ideal
# 4358.758 3457.542
# Another way to validate the previous results is to just plot the
distributions using a box-plot
plot(price ~ cut, data = data, ylim = c(0,12000),
col = 'deepskyblue3')
我们可以通过检查 p 值是否低于 0.05 来分析检验结果。如果是,我们保留备择假设。这意味着我们发现切工因子的两个层级之间的价格有差异。根据层级的名称,我们会预料到此结果,但我们不会预料到不及格组的平均价格高于理想组。我们可以通过比较每个因子的均值来证明这一点。
plot 命令生成一个图,显示价格变量与切工变量之间的关系。它是一个箱形图;我们在第 16.0.1 节中已经介绍过这个图,但它基本显示了我们正在分析的两个切工等级的价格变量的分布。
Analysis of Variance
方差分析 (ANOVA) 是一个统计模型,用于通过比较每个组的均值和方差来分析组分布之间的差异,该模型是由罗纳德·费舍尔开发的。ANOVA 提供了关于多个组均值是否相等的统计检验,因此它将 t 检验推广至两个以上组。
ANOVA 对于比较三个或更多个组的统计显著性非常有用,因为进行多个两样本 t 检验会增加犯统计 I 型错误的可能性。
在提供数学解释方面,需要了解以下内容才能理解此检验。
xij = x + (xi − x) + (xij − x)
它产生如下模型:
xij = μ + αi + ∈ij
其中 μ 是总体均值且 αi 是第 i 组均值。误差项 ∈ij 被假定从正态分布中独立同分布。检验的原假设为:
α1 = α2 = … = αk
就检验统计量的计算而言,我们需要计算两个值——
-
组间差异平方和——
SSD_B = \sum_{i}^{k} \sum_{j}^{n}(\bar{x_{\bar{i}}} - \bar{x})^2
-
组内平方和
SSD_W = \sum_{i}^{k} \sum_{j}^{n}(\bar{x_{\bar{ij}}} - \bar{x_{\bar{i}}})^2
其中 SSDB 的自由度为 k−1,SSDW 的自由度为 N−k。接着,我们可以为每个度量值定义均方差。
MSB = SSDB / (k - 1)
MSw = SSDw / (N - k)
最后,ANOVA 中的检验统计量定义为以上两个量的比值
F = MSB / MSw
其服从自由度为 k−1 和 N−k 的 F 分布。如果原假设为真,则 F 可能接近 1。否则,组间均方 MSB 可能较大,从而产生较大的 F 值。
基本上,ANOVA 会检验总方差的两种来源并查看哪一部分贡献更多。这就是为什么它被称为方差分析,尽管其目的是比较组均值。
就计算统计量而言,实际上在 R 中完成相当简单。以下示例将展示完成此操作并在结果中绘制图像的方法。
library(ggplot2)
# We will be using the mtcars dataset
head(mtcars)
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
# Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
# Let's see if there are differences between the groups of cyl in the mpg variable.
data = mtcars[, c('mpg', 'cyl')]
fit = lm(mpg ~ cyl, data = mtcars)
anova(fit)
# Analysis of Variance Table
# Response: mpg
# Df Sum Sq Mean Sq F value Pr(>F)
# cyl 1 817.71 817.71 79.561 6.113e-10 ***
# Residuals 30 308.33 10.28
# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
# Plot the distribution
plot(mpg ~ as.factor(cyl), data = mtcars, col = 'deepskyblue3')
此代码将产生以下输出——
我在示例中获得的 p 值显著小于 0.05,因此 R 会返回符号“ * ”以表示这一点。这意味着我们拒绝对原假设,并且发现不同组别的 cyl 变量的 mpg 均值之间存在差异。