Computer Fundamentals 简明教程

Computer - Number Conversion

有许多方法或技术可用于将数字从一个基数转换为另一个基数。在本章中,我们将演示以下内容:

There are many methods or techniques which can be used to convert numbers from one base to another. In this chapter, we’ll demonstrate the following −

  1. Decimal to Other Base System

  2. Other Base System to Decimal

  3. Other Base System to Non-Decimal

  4. Shortcut method - Binary to Octal

  5. Shortcut method - Octal to Binary

  6. Shortcut method - Binary to Hexadecimal

  7. Shortcut method - Hexadecimal to Binary

Decimal to Other Base System

Step 1 ——将要转换的十进制数除以新基数。

Step 1 − Divide the decimal number to be converted by the value of the new base.

Step 2 ——将步骤 1 中的余数作为新基数数的右数最末位数字(最低有效数字)。

Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number.

Step 3 ——将前一次除法的商再除以新基数。

Step 3 − Divide the quotient of the previous divide by the new base.

Step 4 ——将步骤 3 中的余数记录为新基数数的下一个数字(向左)。

Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new base number.

重复步骤 3 和 4,从右向左取余数,直到步骤 3 中的商变成 0。

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3.

这样得到的最后的余数就是新基数数的最高有效数字 (MSD)。

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base number.

Example

十进制数:2910

Decimal Number: 2910

计算二进制等价——

Calculating Binary Equivalent −

Step

Operation

Result

Remainder

Step 1

29 / 2

14

1

Step 2

14 / 2

7

0

Step 3

7 / 2

3

1

Step 4

3 / 2

1

1

Step 5

1 / 2

0

1

如步骤 2 和步骤 4 中所述,余数必须按逆序排列,这样第一个余数就变成最低有效数字 (LSD),最后一个余数就变成最高有效数字 (MSD)。

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder becomes the Least Significant Digit (LSD) and the last remainder becomes the Most Significant Digit (MSD).

十进制数:2910 = 二进制数:111012。

Decimal Number : 2910 = Binary Number : 111012.

Other Base System to Decimal System

Step 1 ——确定每个数字的列(位置)值(这取决于数字的位置和数制系统的基数)。

Step 1 − Determine the column (positional) value of each digit (this depends on the position of the digit and the base of the number system).

Step 2 ——将步骤 1 中得到的列值与位于相应列中的数字相乘。

Step 2 − Multiply the obtained column values (in Step 1) by the digits in the corresponding columns.

Step 3 − 计算第 2 步中所得乘积之和。和数即为十进制等值。

Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in decimal.

Example

二进制数:111012

Binary Number: 111012

计算十进制当量 −

Calculating Decimal Equivalent −

Step

Binary Number

Decimal Number

Step 1

111012

1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) + (1 x 2010

Step 2

111012

(16 + 8 + 4 + 0 + 1)10

Step 3

111012

2910

二进制数:111012 = 十进制数:2910

Binary Number : 111012 = Decimal Number : 2910

Other Base System to Non-Decimal System

Step 1 − 将原始数字转换为十进制数(以 10 为基)。

Step 1 − Convert the original number to a decimal number (base 10).

Step 2 − 将获得的十进制数转换为新的基数。

Step 2 − Convert the decimal number so obtained to the new base number.

Example

八进制数:258

Octal Number : 258

计算二进制等价——

Calculating Binary Equivalent −

Step 1 - Convert to Decimal

Step

Octal Number

Decimal Number

Step 1

258

2 x 81) + (5 x 8010

Step 2

258

(16 + 5)10

Step 3

258

2110

八进制数:258 = 十进制数:2110

Octal Number : 258 = Decimal Number : 2110

Step 2 - Convert Decimal to Binary

Step

Operation

Result

Remainder

Step 1

21 / 2

10

1

Step 2

10 / 2

5

0

Step 3

5 / 2

2

1

Step 4

2 / 2

1

0

Step 5

1 / 2

0

1

十进制数:2110 = 二进制数:101012

Decimal Number : 2110 = Binary Number : 101012

八进制数:258 = 二进制数:101012

Octal Number : 258 = Binary Number : 101012

Shortcut Method ─ Binary to Octal

Step 1 − 将二进制位分组为三组(从右侧开始)。

Step 1 − Divide the binary digits into groups of three (starting from the right).

Step 2 − 将每组三个二进制位转换为一位八进制数字。

Step 2 − Convert each group of three binary digits to one octal digit.

Example

二进制数:101012

Binary Number : 101012

计算八进制等价−

Calculating Octal Equivalent −

Step

Binary Number

Octal Number

Step 1

101012

010 101

Step 2

101012

28 58

Step 3

101012

258

二进制数:101012 = 八进制数:258

Binary Number : 101012 = Octal Number : 258

Shortcut Method ─ Octal to Binary

Step 1 − 将每个八进制数字转换为一位三位二进制数(在进行该转换时,可将八进制数字视为十进制数字)。

Step 1 − Convert each octal digit to a 3-digit binary number (the octal digits may be treated as decimal for this conversion).

Step 2 − 将所有所得二进制组(每组 3 位)合并为一个二进制数。

Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary number.

Example

八进制数:258

Octal Number : 258

计算二进制等价——

Calculating Binary Equivalent −

Step

Octal Number

Binary Number

Step 1

258

210 510

Step 2

258

0102 1012

Step 3

258

0101012

八进制数:258 = 二进制数:101012

Octal Number : 258 = Binary Number : 101012

Shortcut Method ─ Binary to Hexadecimal

Step 1 − 将二进制数字分为四组(从右开始)。

Step 1 − Divide the binary digits into groups of four (starting from the right).

Step 2 − 将每组四个二进制数字转换为一个十六进制符号。

Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

二进制数:101012

Binary Number : 101012

计算十六进制等值 −

Calculating hexadecimal Equivalent −

Step

Binary Number

Hexadecimal Number

Step 1

101012

0001 0101

Step 2

101012

110 510

Step 3

101012

1516

二进制数:101012 = 十六进制数:1516

Binary Number : 101012 = Hexadecimal Number : 1516

Shortcut Method - Hexadecimal to Binary

Step 1 − 将每个十六进制数字转换为一个四位二进制数(在此转换中,十六进制数字可视为十进制数字)。

Step 1 − Convert each hexadecimal digit to a 4-digit binary number (the hexadecimal digits may be treated as decimal for this conversion).

Step 2 − 将所有结果二进制组(每组 4 位)组合成一个二进制数。

Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary number.

Example

十六进制数:1516

Hexadecimal Number : 1516

计算二进制等价——

Calculating Binary Equivalent −

Step

Hexadecimal Number

Binary Number

Step 1

1516

110 510

Step 2

1516

00012 01012

Step 3

1516

000101012

十六进制数:1516 = 二进制数:101012

Hexadecimal Number : 1516 = Binary Number : 101012