Computer Logical Organization 简明教程
Digital Number System
数字系统只能理解位置数系,其中有一些符号称为数字,并且这些符号根据它们在数字中所处的位置表示不同的值。
A digital system can understand positional number system only where there are a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.
使用以下方法可以确定数字中每个数字的值:
A value of each digit in a number can be determined using
-
The digit
-
The position of the digit in the number
-
The base of the number system (where base is defined as the total number of digits available in the number system).
Decimal Number System
我们日常生活中所使用的数字系统就是十进制数字系统。十进制数字系统基数为 10,因为其使用了 0 至 9 共 10 个数字。在十进制数字系统中,小数点左边的各个位置依次表示个位、十位、百位、千位等。
The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represents units, tens, hundreds, thousands and so on.
每个位置都表示基数(10)的特定幂。例如,十进制数字 1234 由个位上的数字 4、十位上的数字 3、百位上的数字 2 和千位上的数字 1 组成,其值可以写成:
Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can be written as
(1×1000) + (2×100) + (3×10) + (4×l)
(1×103) + (2×102) + (3×101) + (4×l00)
1000 + 200 + 30 + 1
1234
作为一名计算机程序员或 IT 专业人士,你应对计算机中经常使用的以下数字系统有所了解。
As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.
S.N. |
Number System & Description |
1 |
*Binary Number System*Base 2. Digits used: 0, 1 |
2 |
*Octal Number System*Base 8. Digits used: 0 to 7 |
3 |
*Hexa Decimal Number System*Base 16. Digits used: 0 to 9, Letters used: A- F |
Binary Number System
特性
Characteristics
-
Uses two digits, 0 and 1.
-
Also called base 2 number system
-
Each position in a binary number represents a 0 power of the base (2). Example: 20
-
Last position in a binary number represents an x power of the base (2). Example: 2x where x represents the last position - 1.
Example
二进制数字:101012
Binary Number: 101012
计算十进制当量 −
Calculating Decimal Equivalent −
Step |
Binary Number |
Decimal Number |
Step 1 |
101012 |
1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 2010 |
Step 2 |
101012 |
(16 + 0 + 4 + 0 + 1)10 |
Step 3 |
101012 |
2110 |
Note: 101012 通常写成 10101。
Note: 101012 is normally written as 10101.
Octal Number System
特性
Characteristics
-
Uses eight digits, 0,1,2,3,4,5,6,7.
-
Also called base 8 number system
-
Each position in an octal number represents a 0 power of the base (8). Example: 80
-
Last position in an octal number represents an x power of the base (8). Example: 8x where x represents the last position - 1.
Example
八进制数 − 125708
Octal Number − 125708
计算十进制当量 −
Calculating Decimal Equivalent −
Step |
Octal Number |
Decimal Number |
Step 1 |
125708 |
1 × 84) + (2 × 83) + (5 × 82) + (7 × 81) + (0 × 8010 |
Step 2 |
125708 |
(4096 + 1024 + 320 + 56 + 0)10 |
Step 3 |
125708 |
549610 |
Note: 125708 通常写成 12570。
Note: 125708 is normally written as 12570.
Hexadecimal Number System
特性
Characteristics
-
Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
-
Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
-
Also called base 16 number system.
-
Each position in a hexadecimal number represents a 0 power of the base (16). Example 160.
-
Last position in a hexadecimal number represents an x power of the base (16). Example 16x where x represents the last position - 1.
Example −
十六进制数:19FDE16
Hexadecimal Number: 19FDE16
计算十进制当量 −
Calculating Decimal Equivalent −
Step |
Hexadecimal Number |
Decimal Number |
Step 1 |
19FDE16 |
1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 16010 |
Step 2 |
19FDE16 |
1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 16010 |
Step 3 |
19FDE16 |
(65536 + 36864 + 3840 + 208 + 14)10 |
Step 4 |
19FDE16 |
10646210 |
Note − 19FDE16 通常写为 19FDE。
Note − 19FDE16 is normally written as 19FDE.