Digital-electronics 简明教程

Implementation of XOR Gate from NOR Gate

为了执行许多逻辑过程,逻辑门是设计数字电路时至关重要的元素。当输入彼此不同时产生高输出的一个这样的门是 XOR(异或)门。本教程将讨论使用 NOR 门创建 XOR 门的一种有趣策略。理解这种实现有助于我们更好地理解逻辑门之间的灵活性和关系。

What is a XOR Gate?

另一个在数字电路中经常使用的基本逻辑门是 XOR(异或)门。当有奇数个高输入时,它会产生高输出。换句话说,只有当输入彼此不同时,输出才高。

Truth Table of XOR Gate

双输入异或门的真值表如下 −

Input A

Input B

Output

0

0

0

0

1

1

1

0

1

1

1

0

双输入异或门的布尔表达为 −

输出 = A ⊕ B

其中“⊕”表示 XOR 运算。

NOR Gate

NOR 门是一种执行逻辑析取(OR)然后执行逻辑否定(NOT)的逻辑门。它从两个或更多个输入信号生成一个输出信号。只有当 NOR 门的所有输入都为低(0)时,输出才会为高(1),对于所有其他输入配置,输出都将为低(0)。

Truth Table of NOR Gate

双输入 NOR 门的真值表如下 −

Input A

Input B

Output

0

0

1

0

1

0

1

0

0

1

1

0

双输入 NOR 门的布尔表达为 −

\mathrm{输出 \: = \: \thicksim \: (A \: + \: B)}

其中“~”表示逻辑否定(NOT),而“+”表示逻辑析取(OR)。

数字电路中经常使用 NOR 门,可以使用 NOR 门来实现更多逻辑门和复杂的数字电路。由于它们被视为通用门,因此只能使用 NOR 门构建任何其他逻辑门或电路。

Implementation of XOR Gate from NOR Gate

仅使用 NOR 门创建异或门的电路图至少需要五个 NOR 门。五个以上的 NOR 门也可以包含一个异或门。使用五个 NOR 门实现异或门的原理图显示在附图中。

implementation of xor gate from nor gate

\mathrm{Y \: = \: (A \: \overline{B} \: + \: \overline{A} \: B)}

以下是根据上述电路获得异或门输出的方法 −

最左边的 NOR 门的输入为 A 和 B,其输出为 $\mathrm{\overline{A+B}}$

上 NOR 门的输入为 A 和 $\mathrm{\overline{A+B}}$,输出为 $\mathrm{\overline{A \: + \: \overline{A+B}}}$

同样,下 NOR 门的输入为 B 和 $\mathrm{\overline{A+B}}$,其输出为 $\mathrm{\overline{B \: + \: \overline{A+B}}}$

第 4 个 NOR 门的输入是上 NOR 门和下 NOR 门的输出,即 $\mathrm{\overline{A \: + \: \overline{A+B}}}$ 和 $\mathrm{\overline{B \: + \: \overline{A+B}}}$

第 4 个 NOR 门的输出 = $\mathrm{\overline{\overline{A \: + \: \overline{A+B}} \: + \: \overline{B \: + \: \overline{A+B}}}}$

$\mathrm{= \: \overline{\overline{A}\cdot \: \overline{(\overline{A \: + \: B})} \: + \: \overline{B}\cdot \: \overline{(\overline{A \: + \: B})}}}$

$\mathrm{\overline{\overline{A}\cdot \: (A \: + \: B) \: + \: \overline{B}\cdot \: (A \: + \: B)}}$

$\mathrm{\overline{\overline{A}\cdot \: A \: + \: \overline{A}\cdot \: B \: + \: \overline{B}\cdot \: A \: + \: \overline{B}\cdot \: B}}$

$\mathrm{\overline{\overline{A}\cdot \: B \: + \: \overline{B}\cdot \: A}}$

现在,这是最后一个或第 5 个 NOR 门的输入。此 NOR 门将输出作为其输入的逆转。因此,上述电路的最终输出为 $\mathrm{\overline{\overline{B\cdot \overline{A} \: + \: \overline{B}\cdot \: A}}}$ 或 $\mathrm{Y \: = \: (A\cdot \overline{B} \: + \: \overline{A}\cdot \: B)}$

这是异或门的输出。因此,上述基于 NOR 门的电路是异或门的电路。

因此,上述电路的输出与异或门的输出相同。因此,上述电路表示使用 NAND 门的异或门的电路图。