Impala 简明教程

Impala - With Clause

如果查询过于复杂,我们可以将 aliases 定义为复杂部分,并使用 Impala 的 with 子句将其包含在查询中。

Syntax

以下是在 Impala 中 with 子句的语法。

with x as (select 1), y as (select 2) (select * from x union y);

Example

假设数据库 my_db 中有一个名为 customers 的表,其内容如下 −

[quickstart.cloudera:21000] > select * from customers;
Query: select * from customers
+----+----------+-----+-----------+--------+
| id | name     | age | address   | salary |
+----+----------+-----+-----------+--------+
| 1  | Ramesh   | 32  | Ahmedabad | 20000  |
| 9  | robert   | 23  | banglore  | 28000  |
| 2  | Khilan   | 25  | Delhi     | 15000  |
| 4  | Chaitali | 25  | Mumbai    | 35000  |
| 7  | ram      | 25  | chennai   | 23000  |
| 6  | Komal    | 22  | MP        | 32000  |
| 8  | ram      | 22  | vizag     | 31000  |
| 5  | Hardik   | 27  | Bhopal    | 40000  |
| 3  | kaushik  | 23  | Kota      | 30000  |
+----+----------+-----+-----------+--------+
Fetched 9 row(s) in 0.59s

同样,假设我们有另一个名为 employee 的表,其内容如下 −

[quickstart.cloudera:21000] > select * from employee;
Query: select * from employee
+----+---------+-----+---------+--------+
| id | name    | age | address | salary |
+----+---------+-----+---------+--------+
| 3  | mahesh  | 54  | Chennai | 55000  |
| 2  | ramesh  | 44  | Chennai | 50000  |
| 4  | Rupesh  | 64  | Delhi   | 60000  |
| 1  | subhash | 34  | Delhi   | 40000  |
+----+---------+-----+---------+--------+
Fetched 4 row(s) in 0.59s

以下是 Impala 中 with 子句的示例。在这个示例中,我们使用 with 子句显示 employeecustomers 中年龄大于 25 的记录。

[quickstart.cloudera:21000] >
   with t1 as (select * from customers where age>25),
   t2 as (select * from employee where age>25)
   (select * from t1 union select * from t2);

在执行后,上述查询给出以下输出。

Query: with t1 as (select * from customers where age>25), t2 as (select * from employee where age>25)
   (select * from t1 union select * from t2)
+----+---------+-----+-----------+--------+
| id | name    | age | address   | salary |
+----+---------+-----+-----------+--------+
| 3  | mahesh  | 54  | Chennai   | 55000  |
| 1  | subhash | 34  | Delhi     | 40000  |
| 2  | ramesh  | 44  | Chennai   | 50000  |
| 5  | Hardik  | 27  | Bhopal    | 40000  |
| 4  | Rupesh  | 64  | Delhi     | 60000  |
| 1  | Ramesh  | 32  | Ahmedabad | 20000  |
+----+---------+-----+-----------+--------+
Fetched 6 row(s) in 1.73s