Machine Learning 简明教程
Machine Learning - K-Means Clustering
K 均值算法可以总结为以下步骤:
The K-Means algorithm can be summarized into the following steps −
-
Initialization − Select K random data points as the initial centroids.
-
Assignment − Assign each data point to the closest centroid.
-
Recalculation − Recalculate the centroids by taking the mean of all data points in each cluster.
-
Repeat − Repeat steps 2-3 until the centroids no longer move or the maximum number of iterations is reached.
K 均值算法是一种简单且高效的算法,并且可以处理大型数据集。然而,它有一些限制,例如对初始中心点的敏感性、收敛到局部最优的倾向以及对所有集群假设等方差。
The K-Means algorithm is a straightforward and efficient algorithm, and it can handle large datasets. However, it has some limitations, such as its sensitivity to the initial centroids, its tendency to converge to local optima, and its assumption of equal variance for all clusters.
Implementation in Python
Python 有几个库提供了各种机器学习算法的实现,包括 K 均值聚类。我们来看看如何使用 scikit-learn 库在 Python 中实现 K 均值算法。
Python has several libraries that provide implementations of various machine learning algorithms, including K-Means clustering. Let’s see how to implement the K-Means algorithm in Python using the scikit-learn library.
Step 1 − Import Required Libraries
要在 Python 中实现 K 均值算法,我们首先需要导入所需的库。我们将分别使用 numpy 和 matplotlib 库进行数据处理和可视化,以及 scikit-learn 库进行 K 均值算法。
To implement the K-Means algorithm in Python, we first need to import the required libraries. We will use the numpy and matplotlib libraries for data processing and visualization, respectively, and the scikit-learn library for the K-Means algorithm.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
Step 2 − Generate Data
要测试 K 均值算法,我们需要生成一些样本数据。在此示例中,我们将生成 300 个带有两个特征的随机数据点。我们还会对数据进行可视化。
To test the K-Means algorithm, we need to generate some sample data. In this example, we will generate 300 random data points with two features. We will visualize the data also.
X = np.random.rand(300,2)
plt.figure(figsize=(7.5, 3.5))
plt.scatter(X[:, 0], X[:, 1], s=20, cmap='summer');
plt.show()
Step 3 − Initialize K-Means
接下来,我们需要通过指定集群数 (K) 和最大迭代次数来初始化 K 均值算法。
Next, we need to initialize the K-Means algorithm by specifying the number of clusters (K) and the maximum number of iterations.
kmeans = KMeans(n_clusters=3, max_iter=100)
Step 4 − Train the Model
在初始化 K 均值算法之后,我们可以通过将数据拟合到算法来训练模型。
After initializing the K-Means algorithm, we can train the model by fitting the data to the algorithm.
kmeans.fit(X)
Step 5 − Visualize the Clusters
为了可视化集群,我们可以绘制数据点并根据其分配的集群为它们上色。
To visualize the clusters, we can plot the data points and color them based on their assigned cluster.
plt.figure(figsize=(7.5, 3.5))
plt.scatter(X[:,0], X[:,1], c=kmeans.labels_, s=20, cmap='summer')
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1],
marker='x', c='r', s=50, alpha=0.9)
plt.show()
以上代码的输出将是一个带有根据其分配的集群着色的数据点的图,以及以红色“x”符号标记的中心点。
The output of the above code will be a plot with the data points colored based on their assigned cluster, and the centroids marked with an 'x' symbol in red color.
Complete Implementation Example
以下是 Python 中 K 均值聚类算法的完整实现示例:
Here is the complete implementation example of K-Means Clustering Algorithm in python −
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
X = np.random.rand(300,2)
plt.figure(figsize=(7.5, 3.5))
plt.scatter(X[:, 0], X[:, 1], s=20, cmap='summer');
plt.show()
kmeans = KMeans(n_clusters=3, max_iter=100)
kmeans.fit(X)
plt.figure(figsize=(7.5, 3.5))
plt.scatter(X[:,0], X[:,1], c=kmeans.labels_, s=20, cmap='summer')
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1],
marker='x', c='r', s=50, alpha=0.9)
plt.show()
当你执行此代码时,它将生成以下图作为输出:
When you execute this code, it will produce the following plots as the output −
Applications of K-Means Clustering
K 均值聚类是一种通用算法,在多个领域有各种应用。这里我们重点介绍了一些重要的应用:
K-Means clustering is a versatile algorithm with various applications in several fields. Here we have highlighted some of the important applications −
Image Segmentation
K-Means 聚类可以根据像素的颜色或纹理将图像分割成不同的区域。这项技术被广泛用于计算机视觉应用,例如对象识别、图像检索和医学影像。
K-Means clustering can be used to segment an image into different regions based on the color or texture of the pixels. This technique is widely used in computer vision applications, such as object recognition, image retrieval, and medical imaging.
Customer Segmentation
K-Means 聚类可用于根据客户的购买行为或人口统计特征将客户分成不同的群体。这项技术被广泛用于营销应用,例如客户保留、忠诚度计划和定向广告。
K-Means clustering can be used to segment customers into different groups based on their purchasing behavior or demographic characteristics. This technique is widely used in marketing applications, such as customer retention, loyalty programs, and targeted advertising.
Anomaly Detection
K-Means 聚类可用于通过识别不属于任何聚类的含歧义数据点来识别数据集中的异常值。这项技术被广泛用于欺诈检测、网络入侵检测和预测性维护。
K-Means clustering can be used to detect anomalies in a dataset by identifying data points that do not belong to any cluster. This technique is widely used in fraud detection, network intrusion detection, and predictive maintenance.
Genomic Data Analysis
K-Means 聚类可用于分析基因表达数据,识别共调节或共表达的不同基因组。这项技术被广泛用于生物信息学应用,例如药物发现、疾病诊断和个性化医疗。
K-Means clustering can be used to analyze gene expression data to identify different groups of genes that are co-regulated or co-expressed. This technique is widely used in bioinformatics applications, such as drug discovery, disease diagnosis, and personalized medicine.