Machine Learning 简明教程
Machine Learning - Mean-Shift Clustering
均值偏移聚类算法是一种非参数聚类算法,其工作原理是对数据点的均值进行迭代偏移,朝着数据中最密集的区域。数据的密集区域由核函数决定,核函数是一个基于数据点距均值的距离对数据点分配权重的函数。均值偏移聚类中使用的核函数通常是高斯函数。
The Mean-Shift clustering algorithm is a non-parametric clustering algorithm that works by iteratively shifting the mean of a data point towards the densest area of the data. The densest area of the data is determined by the kernel function, which is a function that assigns weights to the data points based on their distance from the mean. The kernel function used in Mean-Shift clustering is usually a Gaussian function.
均值偏移聚类算法涉及以下步骤:
The steps involved in the Mean-Shift clustering algorithm are as follows −
-
Initialize the mean of each data point to its own value.
-
For each data point, compute the mean shift vector, which is the vector that points towards the densest area of the data.
-
Update the mean of each data point by shifting it towards the densest area of the data.
-
Repeat steps 2 and 3 until convergence is reached.
均值偏移聚类算法是一种基于密度的聚类算法,这意味着它根据数据点的密度而不是它们之间的距离来识别聚类。换句话说,该算法基于数据点密度最高的区域来识别聚类。
The Mean-Shift clustering algorithm is a density-based clustering algorithm, which means that it identifies clusters based on the density of the data points rather than the distance between them. In other words, the algorithm identifies clusters based on the areas where the density of the data points is highest.
Implementation of Mean-Shift Clustering in Python
均值偏移聚类算法可以使用 scikit-learn 库在 Python 编程语言中实现。scikit-learn 库是 Python 中的一个流行的机器学习库,提供了用于数据分析和机器学习的各种工具。使用 scikit-learn 库在 Python 中实现均值偏移聚类算法涉及以下步骤:
The Mean-Shift clustering algorithm can be implemented in Python programming language using the scikit-learn library. The scikit-learn library is a popular machine learning library in Python that provides various tools for data analysis and machine learning. The following steps are involved in implementing the Mean-Shift clustering algorithm in Python using the scikit-learn library −
Step 1 − Import the necessary libraries
numpy 库用于 Python 中的科学计算,而 matplotlib 库用于数据可视化。 sklearn.cluster 库包含 MeanShift 类,它用于在 Python 中实现均值偏移聚类算法。
The numpy library is used for scientific computing in Python, while the matplotlib library is used for data visualization. The sklearn.cluster library contains the MeanShift class, which is used for implementing the Mean-Shift clustering algorithm in Python.
estimate_bandwidth 函数用于估计核函数的带宽,核函数的带宽是均值偏移聚类算法中的一个重要参数。
The estimate_bandwidth function is used to estimate the bandwidth of the kernel function, which is an important parameter in the Mean-Shift clustering algorithm.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
Step 2 − Generate the data
在此步骤中,我们使用 numpy.random.randn 函数生成一个具有 500 个数据点和 2 个特征的随机数据集。
In this step, we generate a random dataset with 500 data points and 2 features. We use the numpy.random.randn function to generate the data.
# Generate the data
X = np.random.randn(500,2)
Step 3 − Estimate the bandwidth of the kernel function
在此步骤中,我们使用 estimate_bandwidth 函数估算核函数的带宽。带宽是均值偏移聚类算法中的一个重要参数,它决定了核函数的宽度。
In this step, we estimate the bandwidth of the kernel function using the estimate_bandwidth function. The bandwidth is an important parameter in the Mean-Shift clustering algorithm, which determines the width of the kernel function.
# Estimate the bandwidth
bandwidth = estimate_bandwidth(X, quantile=0.1, n_samples=100)
Step 4 − Initialize the Mean-Shift clustering algorithm
在此步骤中,我们使用 MeanShift 类对均值偏移聚类算法进行初始化。我们将带宽参数传递给该类以设置核函数的宽度。
In this step, we initialize the Mean-Shift clustering algorithm using the MeanShift class. We pass the bandwidth parameter to the class to set the width of the kernel function.
# Initialize the Mean-Shift algorithm
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
Step 5 − Train the model
在此步骤中,我们使用 MeanShift 类的 fit 方法,在数据集上训练 Mean-Shift 聚类算法。
In this step, we train the Mean-Shift clustering algorithm on the dataset using the fit method of the MeanShift class.
# Train the model
ms.fit(X)
Step 6 − Visualize the results
# Visualize the results
labels = ms.labels_
cluster_centers = ms.cluster_centers_
n_clusters_ = len(np.unique(labels))
print("Number of estimated clusters:", n_clusters_)
# Plot the data points and the centroids
plt.figure(figsize=(7.5, 3.5))
plt.scatter(X[:,0], X[:,1], c=labels, cmap='viridis')
plt.scatter(cluster_centers[:,0], cluster_centers[:,1], marker='*', s=300, c='r')
plt.show()
在此步骤中,我们可视化 Mean-Shift 聚类算法的结果。我们从训练好的模型中提取簇标签和簇中心。然后,我们打印估算的簇数。最后,我们使用 matplotlib 库绘制数据点和质心。
In this step, we visualize the results of the Mean-Shift clustering algorithm. We extract the cluster labels and the cluster centers from the trained model. We then print the number of estimated clusters. Finally, we plot the data points and the centroids using the matplotlib library.
Example
以下是 Python 中 Mean-Shift 聚类算法的完整实现示例 −
Here is the complete implementation example of Mean-Shift Clustering Algorithm in python −
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
# Generate the data
X = np.random.randn(500,2)
# Estimate the bandwidth
bandwidth = estimate_bandwidth(X, quantile=0.1, n_samples=100)
# Initialize the Mean-Shift algorithm
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
# Train the model
ms.fit(X)
# Visualize the results
labels = ms.labels_
cluster_centers = ms.cluster_centers_
n_clusters_ = len(np.unique(labels))
print("Number of estimated clusters:", n_clusters_)
# Plot the data points and the centroids
plt.figure(figsize=(7.5, 3.5))
plt.scatter(X[:,0], X[:,1], c=labels, cmap='summer')
plt.scatter(cluster_centers[:,0], cluster_centers[:,1], marker='*',
s=200, c='r')
plt.show()
当你执行该程序时,它将生成下图作为输出 −
When you execute the program, it will produce the following plot as the output −
Applications of Mean-Shift Clustering
Mean-Shift 聚类算法在各个领域有许多应用。Mean-Shift 聚类的一些应用如下 −
The Mean-Shift clustering algorithm has several applications in various fields. Some of the applications of Mean-Shift clustering are as follows −
-
Computer vision − Mean-Shift clustering is widely used in computer vision for object tracking, image segmentation, and feature extraction.
-
Image processing − Mean-Shift clustering is used for image segmentation, which is the process of dividing an image into multiple segments based on the similarity of the pixels.
-
Anomaly detection − Mean-Shift clustering can be used for detecting anomalies in data by identifying the areas with low density.
-
Customer segmentation − Mean-Shift clustering can be used for customer segmentation in marketing by identifying groups of customers with similar behavior and preferences.
-
Social network analysis − Mean-Shift clustering can be used for clustering users in social networks based on their interests and interactions.