Numpy 简明教程

NumPy - Ndarray Object

NumPy 中定义的最重要的对象是一个 N 维数组类型,称为 ndarray 。它描述同类型的项的集合。可以使用基于零的索引访问集合中的项。

The most important object defined in NumPy is an N-dimensional array type called ndarray. It describes the collection of items of the same type. Items in the collection can be accessed using a zero-based index.

ndarray 中的每一项在内存中占用相同大小的块。ndarray 中的每个元素都是数据类型对象(称为 dtype )。

Every item in an ndarray takes the same size of block in the memory. Each element in ndarray is an object of data-type object (called dtype).

从 ndarray 对象(通过切片)提取的任何项都通过一种数组标量类型表示为一个 Python 对象。下图展示了 ndarray、数据类型对象 (dtype) 与数组标量类型之间的关系:

Any item extracted from ndarray object (by slicing) is represented by a Python object of one of array scalar types. The following diagram shows a relationship between ndarray, data type object (dtype) and array scalar type −

ndarray

在之后教程中所述的不同数组创建例程中,可以构造 ndarray 类的实例。使用 NumPy 中的数组函数按如下方式创建基本 ndarray:

An instance of ndarray class can be constructed by different array creation routines described later in the tutorial. The basic ndarray is created using an array function in NumPy as follows −

numpy.array

它通过公开数组接口的任意对象或通过返回数组的任意方法创建 ndarray。

It creates an ndarray from any object exposing array interface, or from any method that returns an array.

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

上述构造函数接受以下参数:

The above constructor takes the following parameters −

Sr.No.

Parameter & Description

1

object Any object exposing the array interface method returns an array, or any (nested) sequence.

2

dtype Desired data type of array, optional

3

copy Optional. By default (true), the object is copied

4

order C (row major) or F (column major) or A (any) (default)

5

subok By default, returned array forced to be a base class array. If true, sub-classes passed through

6

ndmin Specifies minimum dimensions of resultant array

仔细查看以下示例,以便更好地理解。

Take a look at the following examples to understand better.

Example 1

import numpy as np
a = np.array([1,2,3])
print a

输出如下 −

The output is as follows −

[1, 2, 3]

Example 2

# more than one dimensions
import numpy as np
a = np.array([[1, 2], [3, 4]])
print a

输出如下 −

The output is as follows −

[[1, 2]
 [3, 4]]

Example 3

# minimum dimensions
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print a

输出如下 −

The output is as follows −

[[1, 2, 3, 4, 5]]

Example 4

# dtype parameter
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print a

输出如下 −

The output is as follows −

[ 1.+0.j,  2.+0.j,  3.+0.j]

ndarray 对象由连续的一维计算机内存段组成,该段与一个索引方案结合在一起,将每个项目映射到内存块中的一个位置。内存块按行优先顺序 (C 样式) 或列优先顺序 (FORTRAN 或 MatLab 样式) 保存元素。

The ndarray object consists of contiguous one-dimensional segment of computer memory, combined with an indexing scheme that maps each item to a location in the memory block. The memory block holds the elements in a row-major order (C style) or a column-major order (FORTRAN or MatLab style).