Plotly 简明教程

Plotly - Adding Buttons Dropdown

Plotly 通过在绘图区域上使用不同的控件(例如按钮、下拉菜单和滑块等)来提供高度的交互性。这些控件与图形布局的 updatemenu 属性结合使用。可以通过指定要调用的方法来 add button 及其行为。

可以与按钮关联的四种方法如下所示 −

  1. restyle − 修改数据或数据属性

  2. relayout − 修改布局属性

  3. update − 修改数据和布局属性

  4. animate − 启动或暂停动画

图形的 modifying the data and data attributes 时,应该使用 restyle 方法。在下面的示例中,通过 restyle 方法将两个按钮添加到布局中,方法为 Updatemenu()

go.layout.Updatemenu(
type = "buttons",
direction = "left",
buttons = list([
   dict(args = ["type", "box"], label = "Box", method = "restyle"),
   dict(args = ["type", "violin"], label = "Violin", method = "restyle" )]
))

默认情况下, type 属性的值为 buttons 。要显示按钮的下拉列表,将类型更改为 dropdown 。在更新其布局之前,向 Figure 对象添加一个框跟踪。以下是如何根据单击按钮显示 boxplotviolin plot 的完整代码 −

import plotly.graph_objs as go
fig = go.Figure()
fig.add_trace(go.Box(y = [1140,1460,489,594,502,508,370,200]))
fig.layout.update(
   updatemenus = [
      go.layout.Updatemenu(
         type = "buttons", direction = "left", buttons=list(
            [
               dict(args = ["type", "box"], label = "Box", method = "restyle"),
               dict(args = ["type", "violin"], label = "Violin", method = "restyle")
            ]
         ),
         pad = {"r": 2, "t": 2},
         showactive = True,
         x = 0.11,
         xanchor = "left",
         y = 1.1,
         yanchor = "top"
      ),
   ]
)
iplot(fig)

下面给出代码的输出 −

violin button

单击 Violin 按钮以显示相应的 Violin plot

dropdown list button

如上所述, Updatemenu() 方法中 type 键的值被赋值为 dropdown 以显示按钮的下拉列表。绘图如下所示 -

update method

修改图形的数据和布局部分时,应使用 update 方法。以下示例演示如何在同时更新布局属性(例如图表标题)时更新和显示痕迹。两个对应于 sine and cos wave 的散点迹线添加到 Figure object 。可见性 attributeTrue 的痕迹将显示在绘图上,其他痕迹将被隐藏。

import numpy as np
import math #needed for definition of pi

xpoints = np.arange(0, math.pi*2, 0.05)
y1 = np.sin(xpoints)
y2 = np.cos(xpoints)
fig = go.Figure()
# Add Traces
fig.add_trace(
   go.Scatter(
      x = xpoints, y = y1, name = 'Sine'
   )
)
fig.add_trace(
   go.Scatter(
      x = xpoints, y = y2, name = 'cos'
   )
)
fig.layout.update(
   updatemenus = [
      go.layout.Updatemenu(
         type = "buttons", direction = "right", active = 0, x = 0.1, y = 1.2,
         buttons = list(
            [
               dict(
                  label = "first", method = "update",
                  args = [{"visible": [True, False]},{"title": "Sine"} ]
               ),
               dict(
                  label = "second", method = "update",
                  args = [{"visible": [False, True]},{"title": Cos"}]
               )
            ]
         )
      )
   ]
)
iplot(fig)

最初,将显示 Sine curve 。如果单击第二个按钮,则会出现 cos trace

请注意, chart title 也会相应地更新。

sine curve

为了使用 animate 方法,我们需要添加一个或多个 Frames to the Figure 对象。除了数据和布局之外,还可以将框架作为图形对象中的密钥添加。框架密钥指向一系列图形,其中每一个图形将在触发动画时循环遍历。

你可以添加播放和暂停按钮,通过在布局中添加 updatemenus array ,为图表引入动画。

"updatemenus": [{
   "type": "buttons", "buttons": [{
      "label": "Your Label", "method": "animate", "args": [frames]
   }]
}]

在以下示例中,首先绘制 scatter curve 轨迹。然后添加 frames ,它是一个 50 Frame objects 列表,每个列表代表曲线上的 red marker 。请注意,按钮的 args 属性被设置为 None,因此所有帧都将被动画化。

import numpy as np
t = np.linspace(-1, 1, 100)
x = t + t ** 2
y = t - t ** 2
xm = np.min(x) - 1.5
xM = np.max(x) + 1.5
ym = np.min(y) - 1.5
yM = np.max(y) + 1.5
N = 50
s = np.linspace(-1, 1, N)
#s = np.arange(0, math.pi*2, 0.1)
xx = s + s ** 2
yy = s - s ** 2
fig = go.Figure(
   data = [
      go.Scatter(x = x, y = y, mode = "lines", line = dict(width = 2, color = "blue")),
      go.Scatter(x = x, y = y, mode = "lines", line = dict(width = 2, color = "blue"))
   ],
   layout = go.Layout(
      xaxis=dict(range=[xm, xM], autorange=False, zeroline=False),
      yaxis=dict(range=[ym, yM], autorange=False, zeroline=False),
      title_text="Moving marker on curve",
      updatemenus=[
         dict(type="buttons", buttons=[dict(label="Play", method="animate", args=[None])])
      ]
   ),
   frames = [go.Frame(
      data = [
            go.Scatter(
            x = [xx[k]], y = [yy[k]], mode = "markers", marker = dict(
               color = "red", size = 10
            )
         )
      ]
   )
   for k in range(N)]
)
iplot(fig)

代码的输出如下所示 -

play button

单击 play 按钮后,红色标记将开始沿着曲线移动。