Plotly 简明教程
Plotly - Box Plot Violin Plot and Contour Plot
本章重点介绍了对包括箱形图、小提琴图、轮廓图和颤动图在内的各种图表的详细理解。最初,我们将从箱形图开始。
Box Plot
箱形图显示了一组数据的摘要,包括最小值、 first quartile, median, third quartile 和 maximum 。在箱形图中,我们从第一个四分位数到第三个四分位数画一个框。一条垂直线在中位数处通过该框。从框垂直延伸出来的线表示上下四分位数外的可变性,称为晶须。因此,箱形图也称为箱形图和 whisker plot 。晶须从每个四分位数延伸到最小值或最大值。
要绘制箱形图,我们必须使用 go.Box() 函数。可以将数据序列分配给 x 或 y 参数。相应地,箱形图将水平或垂直绘制。在以下示例中,某公司不同分公司的销售数据转换成水平箱形图。它显示了最小值和最大值的中位数。
trace1 = go.Box(y = [1140,1460,489,594,502,508,370,200])
data = [trace1]
fig = go.Figure(data)
iplot(fig)
输出如下所示:
可以给 go.Box() 函数各种其他参数来控制箱形图的外观和行为。其中之一是 boxmean 参数。
boxmean 参数默认设置为 true。结果,箱的基本分布的平均值在箱内绘制为虚线。如果将其设置为 sd,则还绘制分布的标准差。
boxpoints 参数默认等于 " outliers "。仅显示晶须外的样本点。如果为 "suspectedoutliers",则显示异常点,并突出显示小于 4"Q1-3"Q3 或大于 4"Q3-3"Q1 的点。如果为 "False",则仅显示箱(es),而不显示样本点。
在以下示例中, box trace 使用标准差和异常点绘制。
trc = go.Box(
y = [
0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15,
8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25
],
boxpoints = 'suspectedoutliers', boxmean = 'sd'
)
data = [trc]
fig = go.Figure(data)
iplot(fig)
输出如下所示:
Violin Plot
小提琴图类似于箱形图,不同之处在于它们还显示了不同值处数据的概率密度。与标准箱形图一样,小提琴图将包括一个表示数据中位数的标记和一个表示四分位间范围的框。在这个箱形图上叠加的是核密度估计。与箱形图一样,小提琴图用于表示不同“类别”中变量分布(或样本分布)的比较。
小提琴图比普通箱形图更具信息性。事实上,虽然箱形图仅显示平均值/中位数和四分位数范围等汇总统计数据,但小提琴图显示了 full distribution of the data 。
go.Violin() 函数在 graph_objects 模块中返回小提琴迹对象。为了显示基础箱形图,将 boxplot_visible 属性设置为 True。类似地,通过将 meanline_visible 属性设置为 true,可以在小提琴内部显示对应于样本平均值的线。
以下示例演示如何使用 Plotly 的功能显示小提琴图。
import numpy as np
np.random.seed(10)
c1 = np.random.normal(100, 10, 200)
c2 = np.random.normal(80, 30, 200)
trace1 = go.Violin(y = c1, meanline_visible = True)
trace2 = go.Violin(y = c2, box_visible = True)
data = [trace1, trace2]
fig = go.Figure(data = data)
iplot(fig)
输出如下 −
Contour plot
二维等值线图显示二维数值数组 z 的轮廓线,即 z 的 isovalues 插值线。双变量函数的等值线是函数具有常数值的曲线,使得曲线连接等值点。
如果你想了解某个值 Z 如何随着两个输入值 X 和 Y 变化而变化(即 Z = f(X,Y) ),那么轮廓图非常合适。双变量函数的等值线或等值线是函数具有常数值的曲线。
自变量 x 和 y 通常限制在一个称为网格的规则网格中。numpy.meshgrid 由一个 x 值数组和一个 y 值数组创建一个矩形网格。
让我们首先使用 Numpy 库中的 linspace() 函数创建 x、y 和 z 的数据值。我们从 x 和 y 值创建 meshgrid ,并获取由 x2+y2 平方根组成的 z 数组
我们在 graph_objects 模块中有一个 go.Contour() 函数,它获取 x、 y 和 z 属性。以下代码片段显示了上述计算的 x、 y 和 z 值的轮廓图。
import numpy as np
xlist = np.linspace(-3.0, 3.0, 100)
ylist = np.linspace(-3.0, 3.0, 100)
X, Y = np.meshgrid(xlist, ylist)
Z = np.sqrt(X**2 + Y**2)
trace = go.Contour(x = xlist, y = ylist, z = Z)
data = [trace]
fig = go.Figure(data)
iplot(fig)
输出如下 −
轮廓图可以通过一个或多个以下参数自定义 −
-
Transpose (boolean) − 对 z 数据进行转置。
如果 xtype (或 ytype )等于“array”,则 x/y 坐标由“x”/“y”给出。如果“scaled”,则 x 坐标由“x0”和“ dx ”给出。
-
connectgaps 参数确定是否填充 z 数据中的空白。
-
ncontours 参数的默认值为 15。实际轮廓线数量将自动选择为小于或等于
ncontours
的值。仅在autocontour
为“True”时有效。
轮廓类型默认值为“ levels ”,因此数据表示为显示多级的轮廓图。如果 constrain ,数据将表示为约束,无效区域按照 operation 和 value 参数指定的着色。
showlines − 确定是否绘制轮廓线。
zauto 默认情况下为 True ,确定是否根据输入数据(此处为 z
)来计算颜色域,或根据 zmin
和 zmax
中设置的边界。当 zmin
和 zmax
由用户设置时,默认为 False
。
Quiver plot
羽状图也称为 velocity plot 。它以箭头形式显示速度向量,箭头组件为 ( u,v ) 在点 (x,y)。为了绘制羽状图,我们将使用在 Plotly 的 figure_factory 模块中定义的 create_quiver() 函数。
Plotly 的 Python API 包含一个图形工厂模块,其中包含许多包装函数,这些函数创建了独特的图表类型,这些图表类型尚未包含在 plotly.js 中,Plotly 的开源绘图库。
create_quiver() 函数接受以下参数 −
-
x − 箭头的 x 坐标
-
y − 箭头的 y 坐标
-
u − 箭头向量的 x 分量
-
v − 箭头向量的 y 分量
-
scale − 缩放箭头大小
-
arrow_scale − 箭头长度
-
angle − 箭头角度
以下代码在 Jupyter notebook 中呈现一个简单的箭簇图 −
import plotly.figure_factory as ff
import numpy as np
x,y = np.meshgrid(np.arange(-2, 2, .2), np.arange(-2, 2, .25))
z = x*np.exp(-x**2 - y**2)
v, u = np.gradient(z, .2, .2)
# Create quiver figure
fig = ff.create_quiver(x, y, u, v,
scale = .25, arrow_scale = .4,
name = 'quiver', line = dict(width = 1))
iplot(fig)
代码的输出如下 −