Python Pandas 简明教程

Python Pandas - Concatenation

Pandas 提供了多种功能,可轻松组合 Series, DataFramePanel 对象。

 pd.concat(objs,axis=0,join='outer',join_axes=None,
ignore_index=False)
  1. objs − 这是 Series、DataFrame 或 Panel 对象的序列或映射。

  2. axis − {0, 1, …​},默认为 0。这是要沿其连接的轴。

  3. join − {‘inner’, ‘outer’},默认为 ‘outer’。如何处理其他轴上的索引。Outer 用于并集,inner 用于交集。

  4. ignore_index − 布尔值,默认为 False。如果为 True,则不使用连接轴上的索引值。结果轴将被标记为 0、…、n - 1。

  5. join_axes −这是索引对象列表。用于其他 (n-1) 轴的特定索引,而不是执行内部/外部设置逻辑。

Concatenating Objects

concat 函数执行沿轴执行串联操作的所有繁重工作。让我们创建不同的对象并进行串联。

import pandas as pd

one = pd.DataFrame({
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5'],
   'Marks_scored':[98,90,87,69,78]},
   index=[1,2,3,4,5])

two = pd.DataFrame({
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5'],
   'Marks_scored':[89,80,79,97,88]},
   index=[1,2,3,4,5])
print pd.concat([one,two])

它的 output 如下所示 −

    Marks_scored     Name   subject_id
1             98     Alex         sub1
2             90      Amy         sub2
3             87    Allen         sub4
4             69    Alice         sub6
5             78   Ayoung         sub5
1             89    Billy         sub2
2             80    Brian         sub4
3             79     Bran         sub3
4             97    Bryce         sub6
5             88    Betty         sub5

假设我们希望将特定键与切片的每个 DataFrame 片段相关联。我们可以通过使用 keys 参数来实现此目的−

import pandas as pd

one = pd.DataFrame({
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5'],
   'Marks_scored':[98,90,87,69,78]},
   index=[1,2,3,4,5])

two = pd.DataFrame({
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5'],
   'Marks_scored':[89,80,79,97,88]},
   index=[1,2,3,4,5])
print pd.concat([one,two],keys=['x','y'])

它的 output 如下所示 −

x  1  98    Alex    sub1
   2  90    Amy     sub2
   3  87    Allen   sub4
   4  69    Alice   sub6
   5  78    Ayoung  sub5
y  1  89    Billy   sub2
   2  80    Brian   sub4
   3  79    Bran    sub3
   4  97    Bryce   sub6
   5  88    Betty   sub5

结果索引被复制;每个索引都被重复。

如果结果对象必须遵循其自己的索引,则将 ignore_index 设置为 True

import pandas as pd

one = pd.DataFrame({
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5'],
   'Marks_scored':[98,90,87,69,78]},
   index=[1,2,3,4,5])

two = pd.DataFrame({
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5'],
   'Marks_scored':[89,80,79,97,88]},
   index=[1,2,3,4,5])
print pd.concat([one,two],keys=['x','y'],ignore_index=True)

它的 output 如下所示 −

    Marks_scored     Name    subject_id
0             98     Alex          sub1
1             90      Amy          sub2
2             87    Allen          sub4
3             69    Alice          sub6
4             78   Ayoung          sub5
5             89    Billy          sub2
6             80    Brian          sub4
7             79     Bran          sub3
8             97    Bryce          sub6
9             88    Betty          sub5

请观察,索引完全更改,并且键也被覆盖。

如果两个对象需要沿 axis=1 添加,那么将追加新列。

import pandas as pd

one = pd.DataFrame({
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5'],
   'Marks_scored':[98,90,87,69,78]},
   index=[1,2,3,4,5])

two = pd.DataFrame({
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5'],
   'Marks_scored':[89,80,79,97,88]},
   index=[1,2,3,4,5])
print pd.concat([one,two],axis=1)

它的 output 如下所示 −

    Marks_scored    Name  subject_id   Marks_scored    Name   subject_id
1           98      Alex      sub1         89         Billy         sub2
2           90       Amy      sub2         80         Brian         sub4
3           87     Allen      sub4         79          Bran         sub3
4           69     Alice      sub6         97         Bryce         sub6
5           78    Ayoung      sub5         88         Betty         sub5

Concatenating Using append

一个有用的串联快捷方式是 Series 和 DataFrame 上的 append 实例方法。这些方法实际上早于 concat。它们沿 axis=0 串联,即索引−

import pandas as pd

one = pd.DataFrame({
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5'],
   'Marks_scored':[98,90,87,69,78]},
   index=[1,2,3,4,5])

two = pd.DataFrame({
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5'],
   'Marks_scored':[89,80,79,97,88]},
   index=[1,2,3,4,5])
print one.append(two)

它的 output 如下所示 −

    Marks_scored    Name  subject_id
1           98      Alex      sub1
2           90       Amy      sub2
3           87     Allen      sub4
4           69     Alice      sub6
5           78    Ayoung      sub5
1           89     Billy      sub2
2           80     Brian      sub4
3           79      Bran      sub3
4           97     Bryce      sub6
5           88     Betty      sub5

append 函数也可以接受多个对象−

import pandas as pd

one = pd.DataFrame({
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5'],
   'Marks_scored':[98,90,87,69,78]},
   index=[1,2,3,4,5])

two = pd.DataFrame({
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5'],
   'Marks_scored':[89,80,79,97,88]},
   index=[1,2,3,4,5])
print one.append([two,one,two])

它的 output 如下所示 −

    Marks_scored   Name    subject_id
1           98     Alex          sub1
2           90      Amy          sub2
3           87    Allen          sub4
4           69    Alice          sub6
5           78   Ayoung          sub5
1           89    Billy          sub2
2           80    Brian          sub4
3           79     Bran          sub3
4           97    Bryce          sub6
5           88    Betty          sub5
1           98     Alex          sub1
2           90      Amy          sub2
3           87    Allen          sub4
4           69    Alice          sub6
5           78   Ayoung          sub5
1           89    Billy          sub2
2           80    Brian          sub4
3           79     Bran          sub3
4           97    Bryce          sub6
5           88    Betty          sub5

Time Series

Pandas 提供了一个强大的工具,用于使用时间序列数据进行工作时间,尤其是在金融领域。在使用时间序列数据时,我们经常会遇到以下问题 −

  1. Generating sequence of time

  2. 将时间序列转换为不同频率

Pandas 提供了一组相对紧凑和独立的工具来执行上述任务。

Get Current Time

datetime.now() 为您提供当前日期和时间。

import pandas as pd

print pd.datetime.now()

它的 output 如下所示 −

2017-05-11 06:10:13.393147

Create a TimeStamp

时间戳数据是最基本类型的时间序列数据,它将值与时间点相关联。对于 pandas 对象,这意味着使用时间点。我们来看一个例子−

import pandas as pd

print pd.Timestamp('2017-03-01')

它的 output 如下所示 −

2017-03-01 00:00:00

还可以转换整数或浮点数时间戳。它们的默认单位是纳秒(因为这是 Timestamp 的存储方式)。但是,时间戳经常存储在另一个单位中,该单位可以被指定。我们来看另一个例子

import pandas as pd

print pd.Timestamp(1587687255,unit='s')

它的 output 如下所示 −

2020-04-24 00:14:15

Create a Range of Time

import pandas as pd

print pd.date_range("11:00", "13:30", freq="30min").time

它的 output 如下所示 −

[datetime.time(11, 0) datetime.time(11, 30) datetime.time(12, 0)
datetime.time(12, 30) datetime.time(13, 0) datetime.time(13, 30)]

Change the Frequency of Time

import pandas as pd

print pd.date_range("11:00", "13:30", freq="H").time

它的 output 如下所示 −

[datetime.time(11, 0) datetime.time(12, 0) datetime.time(13, 0)]

Converting to Timestamps

要转换Series 或类似列表的类似日期的对象,例如字符串、时间戳或混合,可以使用 to_datetime 函数。传递时,它返回一个 Series(具有相同的索引),而 list-like 将转换为 DatetimeIndex 。请看以下示例 −

import pandas as pd

print pd.to_datetime(pd.Series(['Jul 31, 2009','2010-01-10', None]))

它的 output 如下所示 −

0  2009-07-31
1  2010-01-10
2         NaT
dtype: datetime64[ns]

NaT 表示 Not a Time (等同于 NaN)

我们来看另一个例子。

import pandas as pd

print pd.to_datetime(['2005/11/23', '2010.12.31', None])

它的 output 如下所示 −

DatetimeIndex(['2005-11-23', '2010-12-31', 'NaT'], dtype='datetime64[ns]', freq=None)