Seaborn 简明教程
Seaborn - Plotting Categorical Data
在我们先前的章节中,我们了解了用于分析所研究的连续变量的散点图、六角形图和核密度估计图。当所研究的变量是分类变量时,这些图不适用。
当一个或两个所研究的变量是分类变量时,我们将使用 striplot()、swarmplot() 等图。Seaborn 提供了这么做的接口。
Categorical Scatter Plots
在本节中,我们将了解分类散点图。
Example
import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('iris')
sb.stripplot(x = "species", y = "petal_length", data = df)
plt.show()
Output
在上图中,我们可以清楚地看到每个物种中 petal_length 的差异。但是,上述散点图的主要问题是散点图上的点重叠在一起。我们使用“抖动”参数来处理这种情况。
抖动会向数据添加一些随机噪声。此参数将调整沿分类轴的位置。
Example
import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('iris')
sb.stripplot(x = "species", y = "petal_length", data = df, jitter = Ture)
plt.show()