Apache Storm 简明教程
Apache Storm in Twitter
在本节中,我们将讨论 Apache Storm 的实时应用程序。我们将看到 Twitter 中如何使用 Storm。
Twitter 是一款在线社交网络服务,它提供了一个用于发送和接收用户推文(tweet)的平台。注册用户可以阅读并发布推文,但未注册用户只能阅读推文。主题标签用于通过在相关关键词之前添加 # 来按关键词对推文进行分类。现在,让我们来了解一个按主题查找最常用的主题标签的实时场景。
Spout Creation
喷发的目的是尽快获取人们提交的推文。Twitter 提供“Twitter Streaming API”,这是一个基于 Web 服务的工具,用于实时检索人们提交的推文。可以以任何编程语言访问 Twitter Streaming API。
twitter4j 是一个开源的非官方 Java 库,它提供了基于 Java 的模块以轻松访问 Twitter Streaming API。 twitter4j 提供了一个基于侦听器的框架来访问推文。要访问 Twitter Streaming API,我们需要登录 Twitter 开发人员帐户,并应该获取以下 OAuth 身份验证详细信息。
-
Customerkey
-
CustomerSecret
-
AccessToken
-
AccessTookenSecret
Storm 在其入门套件中提供了 twitter 喷发 TwitterSampleSpout, 。我们将使用它来检索推文。该喷发需要 OAuth 身份验证详细信息和至少一个关键词。该喷发将基于关键词发出实时推文。完整的程序代码如下所示。
Coding: TwitterSampleSpout.java
import java.util.Map;
import java.util.concurrent.LinkedBlockingQueue;
import twitter4j.FilterQuery;
import twitter4j.StallWarning;
import twitter4j.Status;
import twitter4j.StatusDeletionNotice;
import twitter4j.StatusListener;
import twitter4j.TwitterStream;
import twitter4j.TwitterStreamFactory;
import twitter4j.auth.AccessToken;
import twitter4j.conf.ConfigurationBuilder;
import backtype.storm.Config;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
@SuppressWarnings("serial")
public class TwitterSampleSpout extends BaseRichSpout {
SpoutOutputCollector _collector;
LinkedBlockingQueue<Status> queue = null;
TwitterStream _twitterStream;
String consumerKey;
String consumerSecret;
String accessToken;
String accessTokenSecret;
String[] keyWords;
public TwitterSampleSpout(String consumerKey, String consumerSecret,
String accessToken, String accessTokenSecret, String[] keyWords) {
this.consumerKey = consumerKey;
this.consumerSecret = consumerSecret;
this.accessToken = accessToken;
this.accessTokenSecret = accessTokenSecret;
this.keyWords = keyWords;
}
public TwitterSampleSpout() {
// TODO Auto-generated constructor stub
}
@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
queue = new LinkedBlockingQueue<Status>(1000);
_collector = collector;
StatusListener listener = new StatusListener() {
@Override
public void onStatus(Status status) {
queue.offer(status);
}
@Override
public void onDeletionNotice(StatusDeletionNotice sdn) {}
@Override
public void onTrackLimitationNotice(int i) {}
@Override
public void onScrubGeo(long l, long l1) {}
@Override
public void onException(Exception ex) {}
@Override
public void onStallWarning(StallWarning arg0) {
// TODO Auto-generated method stub
}
};
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setDebugEnabled(true)
.setOAuthConsumerKey(consumerKey)
.setOAuthConsumerSecret(consumerSecret)
.setOAuthAccessToken(accessToken)
.setOAuthAccessTokenSecret(accessTokenSecret);
_twitterStream = new TwitterStreamFactory(cb.build()).getInstance();
_twitterStream.addListener(listener);
if (keyWords.length == 0) {
_twitterStream.sample();
}else {
FilterQuery query = new FilterQuery().track(keyWords);
_twitterStream.filter(query);
}
}
@Override
public void nextTuple() {
Status ret = queue.poll();
if (ret == null) {
Utils.sleep(50);
} else {
_collector.emit(new Values(ret));
}
}
@Override
public void close() {
_twitterStream.shutdown();
}
@Override
public Map<String, Object> getComponentConfiguration() {
Config ret = new Config();
ret.setMaxTaskParallelism(1);
return ret;
}
@Override
public void ack(Object id) {}
@Override
public void fail(Object id) {}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("tweet"));
}
}
Hashtag Reader Bolt
喷发发出的推文将转发到 HashtagReaderBolt ,它将处理该推文并发出所有可用的主题标签。HashtagReaderBolt 使用了 twitter4j 提供的 getHashTagEntities 方法。getHashTagEntities 读取推文并返回主题标签列表。完整的程序代码如下 −
Coding: HashtagReaderBolt.java
import java.util.HashMap;
import java.util.Map;
import twitter4j.*;
import twitter4j.conf.*;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
public class HashtagReaderBolt implements IRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple tuple) {
Status tweet = (Status) tuple.getValueByField("tweet");
for(HashtagEntity hashtage : tweet.getHashtagEntities()) {
System.out.println("Hashtag: " + hashtage.getText());
this.collector.emit(new Values(hashtage.getText()));
}
}
@Override
public void cleanup() {}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("hashtag"));
}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
}
Hashtag Counter Bolt
发出的主题标签将转发到 HashtagCounterBolt 。此螺栓将处理所有主题标签,并将每个主题标签及其计数保存在内存中,使用 Java Map 对象。完整的程序代码如下所示。
Coding: HashtagCounterBolt.java
import java.util.HashMap;
import java.util.Map;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
public class HashtagCounterBolt implements IRichBolt {
Map<String, Integer> counterMap;
private OutputCollector collector;
@Override
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.counterMap = new HashMap<String, Integer>();
this.collector = collector;
}
@Override
public void execute(Tuple tuple) {
String key = tuple.getString(0);
if(!counterMap.containsKey(key)){
counterMap.put(key, 1);
}else{
Integer c = counterMap.get(key) + 1;
counterMap.put(key, c);
}
collector.ack(tuple);
}
@Override
public void cleanup() {
for(Map.Entry<String, Integer> entry:counterMap.entrySet()){
System.out.println("Result: " + entry.getKey()+" : " + entry.getValue());
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("hashtag"));
}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
}
Submitting a Topology
提交拓扑是主要应用程序。Twitter 拓扑包括 TwitterSampleSpout 、 HashtagReaderBolt 和 HashtagCounterBolt 。以下程序代码显示了如何提交拓扑。
Coding: TwitterHashtagStorm.java
import java.util.*;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
public class TwitterHashtagStorm {
public static void main(String[] args) throws Exception{
String consumerKey = args[0];
String consumerSecret = args[1];
String accessToken = args[2];
String accessTokenSecret = args[3];
String[] arguments = args.clone();
String[] keyWords = Arrays.copyOfRange(arguments, 4, arguments.length);
Config config = new Config();
config.setDebug(true);
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("twitter-spout", new TwitterSampleSpout(consumerKey,
consumerSecret, accessToken, accessTokenSecret, keyWords));
builder.setBolt("twitter-hashtag-reader-bolt", new HashtagReaderBolt())
.shuffleGrouping("twitter-spout");
builder.setBolt("twitter-hashtag-counter-bolt", new HashtagCounterBolt())
.fieldsGrouping("twitter-hashtag-reader-bolt", new Fields("hashtag"));
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("TwitterHashtagStorm", config,
builder.createTopology());
Thread.sleep(10000);
cluster.shutdown();
}
}
Building and Running the Application
完整应用程序有四个 Java 代码。它们如下所示 −
-
TwitterSampleSpout.java
-
HashtagReaderBolt.java
-
HashtagCounterBolt.java
-
TwitterHashtagStorm.java
你可以使用以下命令编译应用程序 −
javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:”/path/to/twitter4j/lib/*” *.java
使用以下命令执行应用程序 −
javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:”/path/to/twitter4j/lib/*”:.
TwitterHashtagStorm <customerkey> <customersecret> <accesstoken> <accesstokensecret>
<keyword1> <keyword2> … <keywordN>
Output
应用程序将打印当前可用的标签和其计数。输出应类似于以下内容 −
Result: jazztastic : 1
Result: foodie : 1
Result: Redskins : 1
Result: Recipe : 1
Result: cook : 1
Result: android : 1
Result: food : 2
Result: NoToxicHorseMeat : 1
Result: Purrs4Peace : 1
Result: livemusic : 1
Result: VIPremium : 1
Result: Frome : 1
Result: SundayRoast : 1
Result: Millennials : 1
Result: HealthWithKier : 1
Result: LPs30DaysofGratitude : 1
Result: cooking : 1
Result: gameinsight : 1
Result: Countryfile : 1
Result: androidgames : 1