Keras 简明教程

Keras - Pre-Trained Models

在本章中,我们将学习 Keras 中的预训练模型。让我们从 VGG16 开始。

In this chapter, we will learn about the pre-trained models in Keras. Let us begin with VGG16.

VGG16

VGG16 是另一个预训练模型。它也是使用 ImageNet 训练的。加载模型的语法如下:

VGG16 is another pre-trained model. It is also trained using ImageNet. The syntax to load the model is as follows −

keras.applications.vgg16.VGG16(
   include_top = True,
   weights = 'imagenet',
   input_tensor = None,
   input_shape = None,
   pooling = None,
   classes = 1000
)

该模型的默认输入大小为 224x224。

The default input size for this model is 224x224.

MobileNetV2

MobileNetV2 是另一个预训练模型。它也是使用 ImageNet 训练的。

MobileNetV2 is another pre-trained model. It is also trained uing ImageNet.

加载模型的语法如下:

The syntax to load the model is as follows −

keras.applications.mobilenet_v2.MobileNetV2 (
   input_shape = None,
   alpha = 1.0,
   include_top = True,
   weights = 'imagenet',
   input_tensor = None,
   pooling = None,
   classes = 1000
)

在此,

Here,

alpha 控制网络的宽度。如果值低于 1,则减少每一层中的滤波器数量。如果值高于 1,则增加每一层中的滤波器数量。如果 alpha = 1,则每一层都使用来自论文的默认滤波器数量。

alpha controls the width of the network. If the value is below 1, decreases the number of filters in each layer. If the value is above 1, increases the number of filters in each layer. If alpha = 1, default number of filters from the paper are used at each layer.

该模型的默认输入大小为 224x224

The default input size for this model is 224x224.

InceptionResNetV2

InceptionResNetV2 是另一个预训练模型。它也是使用 ImageNet 训练的。加载模型的语法如下:

InceptionResNetV2 is another pre-trained model. It is also trained using ImageNet. The syntax to load the model is as follows −

keras.applications.inception_resnet_v2.InceptionResNetV2 (
   include_top = True,
   weights = 'imagenet',
   input_tensor = None,
   input_shape = None,
   pooling = None,
   classes = 1000)

此模型可以采用“channels_first”数据格式(通道数、高度、宽度)或“channels_last”数据格式(高度、宽度、通道数)构建。

This model and can be built both with ‘channels_first’ data format (channels, height, width) or ‘channels_last’ data format (height, width, channels).

此模型的默认输入大小为 299x299

The default input size for this model is 299x299.

InceptionV3

InceptionV3 是另一个预训练模型。它也是使用 ImageNet 训练的。加载模型的语法如下所示 −

InceptionV3 is another pre-trained model. It is also trained uing ImageNet. The syntax to load the model is as follows −

keras.applications.inception_v3.InceptionV3 (
   include_top = True,
   weights = 'imagenet',
   input_tensor = None,
   input_shape = None,
   pooling = None,
   classes = 1000
)

在此,

Here,

此模型的默认输入大小为 299x299

The default input size for this model is 299x299.

Conclusion

Keras 是非常简单、可扩展且易于实现的神经网络 API,可用于构建具有高级抽象的高级学习应用程序。Keras 是深度学习模型的最佳选择。

Keras is very simple, extensible and easy to implement neural network API, which can be used to build deep learning applications with high level abstraction. Keras is an optimal choice for deep leaning models.