Keras 简明教程

Real Time Prediction using ResNet Model

ResNet 是一个预训练模型,它使用 ImageNet 进行了训练。在 ImageNet 上预训练了 ResNet 模型权重。它的语法如下所示:

keras.applications.resnet.ResNet50 (
   include_top = True,
   weights = 'imagenet',
   input_tensor = None,
   input_shape = None,
   pooling = None,
   classes = 1000
)

在此,

  1. include_top 指网络顶部的全连接层。

  2. weights 指在 ImageNet 上的预训练。

  3. input_tensor 指用于作为模型图像输入的可选 Keras 张量。

  4. input_shape 指可选形状元组。该模型的默认输入大小为 224x224。

  5. classes 指对图像进行分类的可选类别数。

让我们通过写一个简单的示例来了解该模型:

Step 1: import the modules

让我们加载必要的模块,如下所示:

>>> import PIL
>>> from keras.preprocessing.image import load_img
>>> from keras.preprocessing.image import img_to_array
>>> from keras.applications.imagenet_utils import decode_predictions
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from keras.applications.resnet50 import ResNet50
>>> from keras.applications import resnet50

Step 2: Select an input

让我们选择一个输入图像, Lotus 如下所示:

>>> filename = 'banana.jpg'
>>> ## load an image in PIL format
>>> original = load_img(filename, target_size = (224, 224))
>>> print('PIL image size',original.size)
PIL image size (224, 224)
>>> plt.imshow(original)
<matplotlib.image.AxesImage object at 0x1304756d8>
>>> plt.show()

在这里,我们加载了一张图像 (banana.jpg) 并显示了它。

Step 3: Convert images into NumPy array

让我们将我们的输入 Banana 转换成 NumPy 数组,以便将其传递到模型中以进行预测。

>>> #convert the PIL image to a numpy array
>>> numpy_image = img_to_array(original)

>>> plt.imshow(np.uint8(numpy_image))
<matplotlib.image.AxesImage object at 0x130475ac8>

>>> print('numpy array size',numpy_image.shape)
numpy array size (224, 224, 3)

>>> # Convert the image / images into batch format
>>> image_batch = np.expand_dims(numpy_image, axis = 0)

>>> print('image batch size', image_batch.shape)
image batch size (1, 224, 224, 3)
>>>

Step 4: Model prediction

让我们将我们的输入输入模型以获取预测

>>> prepare the image for the resnet50 model >>>
>>> processed_image = resnet50.preprocess_input(image_batch.copy())

>>> # create resnet model
>>>resnet_model = resnet50.ResNet50(weights = 'imagenet')
>>> Downloavding data from https://github.com/fchollet/deep-learning-models/releas
es/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5
102858752/102853048 [==============================] - 33s 0us/step

>>> # get the predicted probabilities for each class
>>> predictions = resnet_model.predict(processed_image)

>>> # convert the probabilities to class labels
>>> label = decode_predictions(predictions)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/
data/imagenet_class_index.json
40960/35363 [==================================] - 0s 0us/step

>>> print(label)

Output

[
   [
      ('n07753592', 'banana', 0.99229723),
      ('n03532672', 'hook', 0.0014551596),
      ('n03970156', 'plunger', 0.0010738898),
      ('n07753113', 'fig', 0.0009359837) ,
      ('n03109150', 'corkscrew', 0.00028538404)
   ]
]

在这里,该模型正确地预测了香蕉图像。