Pandas 中文参考指南

Duplicate Labels

Index 对象不必是唯一的;可以有重复的行或列标签。这可能有点令人困惑。如果你熟悉 SQL,则知道行标签类似于表上的主键,你永远不希望在 SQL 表中出现重复值。但 pandas 的一个作用是在将其发送到某个下游系统之前清理凌乱的、现实世界中的数据。现实世界中的数据有重复值,即使是在应该唯一的字段中也是如此。

本节描述重复标签如何改变某些操作的行为,以及如何在操作过程中防止重复值出现,或者在出现重复值时检测到它们。

In [1]: import pandas as pd

In [2]: import numpy as np

Consequences of Duplicate Labels

一些 pandas 方法(例如 Series.reindex())在存在重复值时就行不通。无法确定输出,因此 pandas 引发错误。

In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])

In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])

File ~/work/pandas/pandas/pandas/core/series.py:5153, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
   5136 @doc(
   5137     NDFrame.reindex,  # type: ignore[has-type]
   5138     klass=_shared_doc_kwargs["klass"],
   (...)
   5151     tolerance=None,
   5152 ) -> Series:
-> 5153     return super().reindex(
   5154         index=index,
   5155         method=method,
   5156         copy=copy,
   5157         level=level,
   5158         fill_value=fill_value,
   5159         limit=limit,
   5160         tolerance=tolerance,
   5161     )

File ~/work/pandas/pandas/pandas/core/generic.py:5610, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
   5607     return self._reindex_multi(axes, copy, fill_value)
   5609 # perform the reindex on the axes
-> 5610 return self._reindex_axes(
   5611     axes, level, limit, tolerance, method, fill_value, copy
   5612 ).__finalize__(self, method="reindex")

File ~/work/pandas/pandas/pandas/core/generic.py:5633, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)
   5630     continue
   5632 ax = self._get_axis(a)
-> 5633 new_index, indexer = ax.reindex(
   5634     labels, level=level, limit=limit, tolerance=tolerance, method=method
   5635 )
   5637 axis = self._get_axis_number(a)
   5638 obj = obj._reindex_with_indexers(
   5639     {axis: [new_index, indexer]},
   5640     fill_value=fill_value,
   5641     copy=copy,
   5642     allow_dups=False,
   5643 )

File ~/work/pandas/pandas/pandas/core/indexes/base.py:4429, in Index.reindex(self, target, method, level, limit, tolerance)
   4426     raise ValueError("cannot handle a non-unique multi-index!")
   4427 elif not self.is_unique:
   4428     # GH#42568
-> 4429     raise ValueError("cannot reindex on an axis with duplicate labels")
   4430 else:
   4431     indexer, _ = self.get_indexer_non_unique(target)

ValueError: cannot reindex on an axis with duplicate labels

其他方法(如索引)可能会产生令人惊讶的结果。通常,使用标量进行索引将降低维度。使用标量切片 DataFrame 将返回 Series。使用标量切片 Series 将返回标量。但对于有重复值的情况,则不是这样。

In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])

In [6]: df1
Out[6]:
   A  A  B
0  0  1  2
1  3  4  5

列中有重复值。如果切片 'B',我们会得到 Series

In [7]: df1["B"]  # a series
Out[7]:
0    2
1    5
Name: B, dtype: int64

但切片 'A' 会返回 DataFrame

In [8]: df1["A"]  # a DataFrame
Out[8]:
   A  A
0  0  1
1  3  4

这同样适用于行标签

In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])

In [10]: df2
Out[10]:
   A
a  0
a  1
b  2

In [11]: df2.loc["b", "A"]  # a scalar
Out[11]: 2

In [12]: df2.loc["a", "A"]  # a Series
Out[12]:
a    0
a    1
Name: A, dtype: int64

Duplicate Label Detection

可以使用 Index.is_unique 查看 Index(存储行或列标签)是否唯一:

In [13]: df2
Out[13]:
   A
a  0
a  1
b  2

In [14]: df2.index.is_unique
Out[14]: False

In [15]: df2.columns.is_unique
Out[15]: True

对于大型数据集,检查索引是否唯一有点费时。pandas 确实缓存这一结果,因此在同一个索引上再次检查非常快。

Index.duplicated() 将返回一个布尔 ndarray,表明标签是否重复。

In [16]: df2.index.duplicated()
Out[16]: array([False,  True, False])

该 ndarray 可用作布尔过滤器以删除重复行。

In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]:
   A
a  0
b  2

如果你需要更多逻辑来处理重复标签,而不仅仅是删除重复项,则对索引使用 groupby() 是一种常见技巧。例如,我们会通过取具有相同标签的所有行的平均值来解决重复问题。

In [18]: df2.groupby(level=0).mean()
Out[18]:
     A
a  0.5
b  2.0

Disallowing Duplicate Labels

在版本 1.2.0 中新增。

如上所述,在读取原始数据时,处理重复值是一项重要功能。也就是说,你可能希望避免在数据处理管道(来自 pandas.concat()rename() 等方法)中引入重复值。SeriesDataFrame 都通过调用 .set_flags(allows_duplicate_labels=False) 来禁止重复标签。(默认是允许它们)。如果有重复的标签,将引发异常。

In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)

File ~/work/pandas/pandas/pandas/core/generic.py:508, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
    506 df = self.copy(deep=copy and not using_copy_on_write())
    507 if allows_duplicate_labels is not None:
--> 508     df.flags["allows_duplicate_labels"] = allows_duplicate_labels
    509 return df

File ~/work/pandas/pandas/pandas/core/flags.py:109, in Flags.__setitem__(self, key, value)
    107 if key not in self._keys:
    108     raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 109 setattr(self, key, value)

File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
     94 if not value:
     95     for ax in obj.axes:
---> 96         ax._maybe_check_unique()
     98 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
    712 duplicates = self._format_duplicate_message()
    713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label
b        [1, 2]

这适用于 DataFrame 的行标签和列标签

In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....:
Out[20]:
   A  B  C
0  0  1  2
1  3  4  5

可以使用 allows_duplicate_labels 来检查或设置此属性,该属性指示该对象是否可以有重复标签。

In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....:

In [22]: df
Out[22]:
   A
x  0
y  1
X  2
Y  3

In [23]: df.flags.allows_duplicate_labels
Out[23]: False

DataFrame.set_flags() 可用于返回一个新的 DataFrame,其属性(如 allows_duplicate_labels)设置为某个值

In [24]: df2 = df.set_flags(allows_duplicate_labels=True)

In [25]: df2.flags.allows_duplicate_labels
Out[25]: True

新的 DataFrame 返回的是与旧 DataFrame 相同数据上的一个视图。或者该属性可以直接设置在同一个对象上

In [26]: df2.flags.allows_duplicate_labels = False

In [27]: df2.flags.allows_duplicate_labels
Out[27]: False

处理原始、混乱的数据时,你可能最初需要读入混乱的数据(潜在有重复的标签)、去重,然后禁止重复进行,以确保你的数据管道不会引入重复。

>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first()  # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False  # disallow going forward

在具有重复标签的 SeriesDataFrame 上设置 allows_duplicate_labels=False,或对禁止重复的 SeriesDataFrame 执行引入重复标签的操作,将引发一个 errors.DuplicateLabelError

In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)

File ~/work/pandas/pandas/pandas/core/frame.py:5767, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   5636 def rename(
   5637     self,
   5638     mapper: Renamer | None = None,
   (...)
   5646     errors: IgnoreRaise = "ignore",
   5647 ) -> DataFrame | None:
   5648     """
   5649     Rename columns or index labels.
   5650
   (...)
   5765     4  3  6
   5766     """
-> 5767     return super()._rename(
   5768         mapper=mapper,
   5769         index=index,
   5770         columns=columns,
   5771         axis=axis,
   5772         copy=copy,
   5773         inplace=inplace,
   5774         level=level,
   5775         errors=errors,
   5776     )

File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   1138     return None
   1139 else:
-> 1140     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
   6255 if other.attrs:
   6256     # We want attrs propagation to have minimal performance
   6257     # impact if attrs are not used; i.e. attrs is an empty dict.
   6258     # One could make the deepcopy unconditionally, but a deepcopy
   6259     # of an empty dict is 50x more expensive than the empty check.
   6260     self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6263 # For subclasses using _metadata.
   6264 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
     94 if not value:
     95     for ax in obj.axes:
---> 96         ax._maybe_check_unique()
     98 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
    712 duplicates = self._format_duplicate_message()
    713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label
X        [0, 2]
Y        [1, 3]

此错误消息包含重复的标签,以及所有重复项(包括“原始”)在 SeriesDataFrame 中的数字位置

Duplicate Label Propagation

一般来说,禁止重复是“粘性的”。它通过操作保留。

In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)

In [30]: s1
Out[30]:
a    0
b    0
dtype: int64

In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})

File ~/work/pandas/pandas/pandas/core/series.py:5090, in Series.rename(self, index, axis, copy, inplace, level, errors)
   5083     axis = self._get_axis_number(axis)
   5085 if callable(index) or is_dict_like(index):
   5086     # error: Argument 1 to "_rename" of "NDFrame" has incompatible
   5087     # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
   5088     # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
   5089     # Hashable], Callable[[Any], Hashable], None]"
-> 5090     return super()._rename(
   5091         index,  # type: ignore[arg-type]
   5092         copy=copy,
   5093         inplace=inplace,
   5094         level=level,
   5095         errors=errors,
   5096     )
   5097 else:
   5098     return self._set_name(index, inplace=inplace, deep=copy)

File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   1138     return None
   1139 else:
-> 1140     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
   6255 if other.attrs:
   6256     # We want attrs propagation to have minimal performance
   6257     # impact if attrs are not used; i.e. attrs is an empty dict.
   6258     # One could make the deepcopy unconditionally, but a deepcopy
   6259     # of an empty dict is 50x more expensive than the empty check.
   6260     self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6263 # For subclasses using _metadata.
   6264 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
     94 if not value:
     95     for ax in obj.axes:
---> 96         ax._maybe_check_unique()
     98 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
    712 duplicates = self._format_duplicate_message()
    713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label
b        [0, 1]

警告

这是一个实验性功能。目前,许多方法都无法传播 allows_duplicate_labels 值。在未来版本中,预期每个获取或返回一个或多个 DataFrame 或 Series 对象的方法都会传播 allows_duplicate_labels