Pandas 中文参考指南
Merge, join, concatenate and compare
-
concat(): Merge multiple Series or DataFrame objects along a shared index or column
-
DataFrame.join(): Merge multiple DataFrame objects along the columns
-
DataFrame.combine_first(): Update missing values with non-missing values in the same location
-
merge(): Combine two Series or DataFrame objects with SQL-style joining
-
merge_ordered(): Combine two Series or DataFrame objects along an ordered axis
-
merge_asof(): Combine two Series or DataFrame objects by near instead of exact matching keys
-
Series.compare() and DataFrame.compare(): Show differences in values between two Series or DataFrame objects
concat()
concat() 函数在轴上连接任意数量的 Series 或 DataFrame 对象,同时在其他轴上执行可选的集合逻辑(并集或交集)。类似于 numpy.concatenate, concat() 获取同质对象列表或字典并将它们连接起来。
The concat() function concatenates an arbitrary amount of Series or DataFrame objects along an axis while performing optional set logic (union or intersection) of the indexes on the other axes. Like numpy.concatenate, concat() takes a list or dict of homogeneously-typed objects and concatenates them.
In [1]: df1 = pd.DataFrame(
...: {
...: "A": ["A0", "A1", "A2", "A3"],
...: "B": ["B0", "B1", "B2", "B3"],
...: "C": ["C0", "C1", "C2", "C3"],
...: "D": ["D0", "D1", "D2", "D3"],
...: },
...: index=[0, 1, 2, 3],
...: )
...:
In [2]: df2 = pd.DataFrame(
...: {
...: "A": ["A4", "A5", "A6", "A7"],
...: "B": ["B4", "B5", "B6", "B7"],
...: "C": ["C4", "C5", "C6", "C7"],
...: "D": ["D4", "D5", "D6", "D7"],
...: },
...: index=[4, 5, 6, 7],
...: )
...:
In [3]: df3 = pd.DataFrame(
...: {
...: "A": ["A8", "A9", "A10", "A11"],
...: "B": ["B8", "B9", "B10", "B11"],
...: "C": ["C8", "C9", "C10", "C11"],
...: "D": ["D8", "D9", "D10", "D11"],
...: },
...: index=[8, 9, 10, 11],
...: )
...:
In [4]: frames = [df1, df2, df3]
In [5]: result = pd.concat(frames)
In [6]: result
Out[6]:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
frames = [process_your_file(f) for f in files]
result = pd.concat(frames)
在连接具有命名轴的 DataFrame 时,pandas 将尽可能地尝试保留这些索引/列名。在所有输入项共享一个公共名称的情况下,将此名称分配给结果。当输入名称不都一致时,结果将不带名称。 MultiIndex 也一样,但会逐级单独应用逻辑。 |
When concatenating DataFrame with named axes, pandas will attempt to preserve these index/column names whenever possible. In the case where all inputs share a common name, this name will be assigned to the result. When the input names do not all agree, the result will be unnamed. The same is true for MultiIndex, but the logic is applied separately on a level-by-level basis. |
Joining logic of the resulting axis
join 关键字指定如何处理第一个 DataFrame 中不存在的轴值。
The join keyword specifies how to handle axis values that don’t exist in the first DataFrame.
join='outer' 采用所有轴值的并集
join='outer' takes the union of all axis values
In [7]: df4 = pd.DataFrame(
...: {
...: "B": ["B2", "B3", "B6", "B7"],
...: "D": ["D2", "D3", "D6", "D7"],
...: "F": ["F2", "F3", "F6", "F7"],
...: },
...: index=[2, 3, 6, 7],
...: )
...:
In [8]: result = pd.concat([df1, df4], axis=1)
In [9]: result
Out[9]:
A B C D B D F
0 A0 B0 C0 D0 NaN NaN NaN
1 A1 B1 C1 D1 NaN NaN NaN
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
6 NaN NaN NaN NaN B6 D6 F6
7 NaN NaN NaN NaN B7 D7 F7
join='inner' 采用轴值的交集
join='inner' takes the intersection of the axis values
In [10]: result = pd.concat([df1, df4], axis=1, join="inner")
In [11]: result
Out[11]:
A B C D B D F
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
要使用原始 DataFrame 中的确切索引来执行有效的“左”联接,可以对结果重新编制索引。
To perform an effective “left” join using the exact index from the original DataFrame, result can be reindexed.
In [12]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)
In [13]: result
Out[13]:
A B C D B D F
0 A0 B0 C0 D0 NaN NaN NaN
1 A1 B1 C1 D1 NaN NaN NaN
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
Ignoring indexes on the concatenation axis
对于没有有意义的索引的 DataFrame 对象,ignore_index 会忽略重叠索引。
For DataFrame objects which don’t have a meaningful index, the ignore_index ignores overlapping indexes.
In [14]: result = pd.concat([df1, df4], ignore_index=True, sort=False)
In [15]: result
Out[15]:
A B C D F
0 A0 B0 C0 D0 NaN
1 A1 B1 C1 D1 NaN
2 A2 B2 C2 D2 NaN
3 A3 B3 C3 D3 NaN
4 NaN B2 NaN D2 F2
5 NaN B3 NaN D3 F3
6 NaN B6 NaN D6 F6
7 NaN B7 NaN D7 F7
Concatenating Series and DataFrame together
You can concatenate a mix of Series and DataFrame objects. The Series will be transformed to DataFrame with the column name as the name of the Series.
In [16]: s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")
In [17]: result = pd.concat([df1, s1], axis=1)
In [18]: result
Out[18]:
A B C D X
0 A0 B0 C0 D0 X0
1 A1 B1 C1 D1 X1
2 A2 B2 C2 D2 X2
3 A3 B3 C3 D3 X3
未命名的 Series 将连续编号。
Unnamed Series will be numbered consecutively.
In [19]: s2 = pd.Series(["_0", "_1", "_2", "_3"])
In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)
In [21]: result
Out[21]:
A B C D 0 1 2
0 A0 B0 C0 D0 _0 _0 _0
1 A1 B1 C1 D1 _1 _1 _1
2 A2 B2 C2 D2 _2 _2 _2
3 A3 B3 C3 D3 _3 _3 _3
ignore_index=True 将删除所有名称引用。
ignore_index=True will drop all name references.
In [22]: result = pd.concat([df1, s1], axis=1, ignore_index=True)
In [23]: result
Out[23]:
0 1 2 3 4
0 A0 B0 C0 D0 X0
1 A1 B1 C1 D1 X1
2 A2 B2 C2 D2 X2
3 A3 B3 C3 D3 X3
Resulting keys
keys 参数为结果索引或列中添加了另一个轴级别(创建了一个 MultiIndex)将特定的键与每个原始 DataFrame 关联。
The keys argument adds another axis level to the resulting index or column (creating a MultiIndex) associate specific keys with each original DataFrame.
In [24]: result = pd.concat(frames, keys=["x", "y", "z"])
In [25]: result
Out[25]:
A B C D
x 0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
In [26]: result.loc["y"]
Out[26]:
A B C D
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
The keys argument cane override the column names when creating a new DataFrame based on existing Series.
In [27]: s3 = pd.Series([0, 1, 2, 3], name="foo")
In [28]: s4 = pd.Series([0, 1, 2, 3])
In [29]: s5 = pd.Series([0, 1, 4, 5])
In [30]: pd.concat([s3, s4, s5], axis=1)
Out[30]:
foo 0 1
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5
In [31]: pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
Out[31]:
red blue yellow
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5
您也可以将字典传入 concat(),在这种情况下,除非指定了其他 keys 参数,否则会将字典键用于 keys 参数:
You can also pass a dict to concat() in which case the dict keys will be used for the keys argument unless other keys argument is specified:
In [32]: pieces = {"x": df1, "y": df2, "z": df3}
In [33]: result = pd.concat(pieces)
In [34]: result
Out[34]:
A B C D
x 0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
In [35]: result = pd.concat(pieces, keys=["z", "y"])
In [36]: result
Out[36]:
A B C D
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
MultiIndex 创建的包含一些级别的信息,这些级别是从所述键和 DataFrame 部分的索引构建而成的:
The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:
In [37]: result.index.levels
Out[37]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])
levels 参数允许指定与 keys 相关联的联接级别
levels argument allows specifying resulting levels associated with the keys
In [38]: result = pd.concat(
....: pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
....: )
....:
In [39]: result
Out[39]:
A B C D
group_key
x 0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
In [40]: result.index.levels
Out[40]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
Appending rows to a DataFrame
If you have a Series that you want to append as a single row to a DataFrame, you can convert the row into a DataFrame and use concat()
In [41]: s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])
In [42]: result = pd.concat([df1, s2.to_frame().T], ignore_index=True)
In [43]: result
Out[43]:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 X0 X1 X2 X3
merge()
merge() 执行类似于 SQL 等关系型数据库的连接操作。熟悉 SQL 但对 pandas 比较陌生的用户可以参考 comparison with SQL。
merge() performs join operations similar to relational databases like SQL. Users who are familiar with SQL but new to pandas can reference a comparison with SQL.
Merge types
merge() 实现了常见的 SQL 风格连接操作。
merge() implements common SQL style joining operations.
当在列上连接列(有可能是一对多连接)的时候,所述 DataFrame 对象中的所有索引都会被拒绝。 |
When joining columns on columns, potentially a many-to-many join, any indexes on the passed DataFrame objects will be discarded. |
对于一对多连接,如果键组合在两表中出现不止一次, DataFrame 将具有关联数据的笛卡尔积。
For a many-to-many join, if a key combination appears more than once in both tables, the DataFrame will have the Cartesian product of the associated data.
In [44]: left = pd.DataFrame(
....: {
....: "key": ["K0", "K1", "K2", "K3"],
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: }
....: )
....:
In [45]: right = pd.DataFrame(
....: {
....: "key": ["K0", "K1", "K2", "K3"],
....: "C": ["C0", "C1", "C2", "C3"],
....: "D": ["D0", "D1", "D2", "D3"],
....: }
....: )
....:
In [46]: result = pd.merge(left, right, on="key")
In [47]: result
Out[47]:
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A2 B2 C2 D2
3 K3 A3 B3 C3 D3
merge() 的 how 参数指定了结果表中包含哪些键。如果键组合没有出现在左侧表或右侧表中,那么该连接表的中的值将为 NA。以下是 how 选项及其 SQL 等效名称的摘要:
The how argument to merge() specifies which keys are included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a summary of the how options and their SQL equivalent names:
合并方法
Merge method
SQL 连接名称
SQL Join Name
说明
Description
left
LEFT OUTER JOIN
仅使用来自左侧框架中的键
Use keys from left frame only
right
RIGHT OUTER JOIN
仅使用右侧数据框中的键
Use keys from right frame only
outer
FULL OUTER JOIN
使用两个数据框中键的并集
Use union of keys from both frames
inner
INNER JOIN
使用两个数据框中键的交集
Use intersection of keys from both frames
cross
CROSS JOIN
创建两个数据框中行的笛卡尔积
Create the cartesian product of rows of both frames
In [48]: left = pd.DataFrame(
....: {
....: "key1": ["K0", "K0", "K1", "K2"],
....: "key2": ["K0", "K1", "K0", "K1"],
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: }
....: )
....:
In [49]: right = pd.DataFrame(
....: {
....: "key1": ["K0", "K1", "K1", "K2"],
....: "key2": ["K0", "K0", "K0", "K0"],
....: "C": ["C0", "C1", "C2", "C3"],
....: "D": ["D0", "D1", "D2", "D3"],
....: }
....: )
....:
In [50]: result = pd.merge(left, right, how="left", on=["key1", "key2"])
In [51]: result
Out[51]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN
In [52]: result = pd.merge(left, right, how="right", on=["key1", "key2"])
In [53]: result
Out[53]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
3 K2 K0 NaN NaN C3 D3
In [54]: result = pd.merge(left, right, how="outer", on=["key1", "key2"])
In [55]: result
Out[55]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K0 NaN NaN C3 D3
5 K2 K1 A3 B3 NaN NaN
In [56]: result = pd.merge(left, right, how="inner", on=["key1", "key2"])
In [57]: result
Out[57]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
In [58]: result = pd.merge(left, right, how="cross")
In [59]: result
Out[59]:
key1_x key2_x A B key1_y key2_y C D
0 K0 K0 A0 B0 K0 K0 C0 D0
1 K0 K0 A0 B0 K1 K0 C1 D1
2 K0 K0 A0 B0 K1 K0 C2 D2
3 K0 K0 A0 B0 K2 K0 C3 D3
4 K0 K1 A1 B1 K0 K0 C0 D0
.. ... ... .. .. ... ... .. ..
11 K1 K0 A2 B2 K2 K0 C3 D3
12 K2 K1 A3 B3 K0 K0 C0 D0
13 K2 K1 A3 B3 K1 K0 C1 D1
14 K2 K1 A3 B3 K1 K0 C2 D2
15 K2 K1 A3 B3 K2 K0 C3 D3
[16 rows x 8 columns]
您可以将 Series 和 DataFrame 与 MultiIndex 相搭配,前提是 MultiIndex 的名称与 DataFrame 中的列相对应。在合并之前使用 Series.reset_index() 将 Series 转换为 DataFrame
You can Series and a DataFrame with a MultiIndex if the names of the MultiIndex correspond to the columns from the DataFrame. Transform the Series to a DataFrame using Series.reset_index() before merging
In [60]: df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})
In [61]: df
Out[61]:
Let Num
0 A 1
1 B 2
2 C 3
In [62]: ser = pd.Series(
....: ["a", "b", "c", "d", "e", "f"],
....: index=pd.MultiIndex.from_arrays(
....: [["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
....: ),
....: )
....:
In [63]: ser
Out[63]:
Let Num
A 1 a
B 2 b
C 3 c
A 4 d
B 5 e
C 6 f
dtype: object
In [64]: pd.merge(df, ser.reset_index(), on=["Let", "Num"])
Out[64]:
Let Num 0
0 A 1 a
1 B 2 b
2 C 3 c
在 DataFrame 中执行具有重复连接键的外连接
Performing an outer join with duplicate join keys in DataFrame
In [65]: left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})
In [66]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
In [67]: result = pd.merge(left, right, on="B", how="outer")
In [68]: result
Out[68]:
A_x B A_y
0 1 2 4
1 1 2 5
2 1 2 6
3 2 2 4
4 2 2 5
5 2 2 6
警告
Warning
基于重复键进行合并将显著增加结果的维度,可能导致内存溢出。
Merging on duplicate keys significantly increase the dimensions of the result and can cause a memory overflow.
Merge key uniqueness
validate 参数检查合并键的唯一性。在合并操作之前检查键的唯一性,可以防止内存溢出和意外的键重复。
The validate argument checks whether the uniqueness of merge keys. Key uniqueness is checked before merge operations and can protect against memory overflows and unexpected key duplication.
In [69]: left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})
In [70]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
In [71]: result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
---------------------------------------------------------------------------
MergeError Traceback (most recent call last)
Cell In[71], line 1
----> 1 result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
File ~/work/pandas/pandas/pandas/core/reshape/merge.py:170, in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
155 return _cross_merge(
156 left_df,
157 right_df,
(...)
167 copy=copy,
168 )
169 else:
--> 170 op = _MergeOperation(
171 left_df,
172 right_df,
173 how=how,
174 on=on,
175 left_on=left_on,
176 right_on=right_on,
177 left_index=left_index,
178 right_index=right_index,
179 sort=sort,
180 suffixes=suffixes,
181 indicator=indicator,
182 validate=validate,
183 )
184 return op.get_result(copy=copy)
File ~/work/pandas/pandas/pandas/core/reshape/merge.py:813, in _MergeOperation.__init__(self, left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, indicator, validate)
809 # If argument passed to validate,
810 # check if columns specified as unique
811 # are in fact unique.
812 if validate is not None:
--> 813 self._validate_validate_kwd(validate)
File ~/work/pandas/pandas/pandas/core/reshape/merge.py:1657, in _MergeOperation._validate_validate_kwd(self, validate)
1653 raise MergeError(
1654 "Merge keys are not unique in left dataset; not a one-to-one merge"
1655 )
1656 if not right_unique:
-> 1657 raise MergeError(
1658 "Merge keys are not unique in right dataset; not a one-to-one merge"
1659 )
1661 elif validate in ["one_to_many", "1:m"]:
1662 if not left_unique:
MergeError: Merge keys are not unique in right dataset; not a one-to-one merge
If the user is aware of the duplicates in the right DataFrame but wants to ensure there are no duplicates in the left DataFrame, one can use the validate='one_to_many' argument instead, which will not raise an exception.
In [72]: pd.merge(left, right, on="B", how="outer", validate="one_to_many")
Out[72]:
A_x B A_y
0 1 1 NaN
1 2 2 4.0
2 2 2 5.0
3 2 2 6.0
Merge result indicator
merge() 接受 indicator 参数。如果 True,则名为 _merge 的类别型列将添加到输出对象中,该列值为:
merge() accepts the argument indicator. If True, a Categorical-type column called _merge will be added to the output object that takes on values:
观察的起源
Observation Origin
uniquement la valeur _merge
_merge value
Fusionner uniquement la clé dans le cadre 'left'
Merge key only in 'left' frame
left_only
Fusionner uniquement la clé dans le cadre 'right'
Merge key only in 'right' frame
right_only
Fusionner la clé dans les deux cadres
Merge key in both frames
both
In [73]: df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})
In [74]: df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})
In [75]: pd.merge(df1, df2, on="col1", how="outer", indicator=True)
Out[75]:
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
Un argument de chaîne pour indicator utilisera la valeur comme nom pour la colonne d’indicateur.
A string argument to indicator will use the value as the name for the indicator column.
In [76]: pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")
Out[76]:
col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
Overlapping value columns
L’argument de fusion suffixes prend un tuple de liste de chaînes à ajouter aux noms de colonnes se chevauchant dans l’entrée DataFrame pour lever l’ambiguïté des colonnes de résultat :
The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input DataFrame to disambiguate the result columns:
In [77]: left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})
In [78]: right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})
In [79]: result = pd.merge(left, right, on="k")
In [80]: result
Out[80]:
k v_x v_y
0 K0 1 4
1 K0 1 5
In [81]: result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))
In [82]: result
Out[82]:
k v_l v_r
0 K0 1 4
1 K0 1 5
DataFrame.join()
DataFrame.join() combine les colonnes de plusieurs DataFrame potentiellement indexés différemment en un seul résultat DataFrame.
DataFrame.join() combines the columns of multiple, potentially differently-indexed DataFrame into a single result DataFrame.
In [83]: left = pd.DataFrame(
....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
....: )
....:
In [84]: right = pd.DataFrame(
....: {"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
....: )
....:
In [85]: result = left.join(right)
In [86]: result
Out[86]:
A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2
In [87]: result = left.join(right, how="outer")
In [88]: result
Out[88]:
A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2
K3 NaN NaN C3 D3
In [89]: result = left.join(right, how="inner")
In [90]: result
Out[90]:
A B C D
K0 A0 B0 C0 D0
K2 A2 B2 C2 D2
DataFrame.join() prend un argument on facultatif qui peut être une ou plusieurs colonnes que le DataFrame passé doit aligner.
DataFrame.join() takes an optional on argument which may be a column or multiple column names that the passed DataFrame is to be aligned.
In [91]: left = pd.DataFrame(
....: {
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: "key": ["K0", "K1", "K0", "K1"],
....: }
....: )
....:
In [92]: right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])
In [93]: result = left.join(right, on="key")
In [94]: result
Out[94]:
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K0 C0 D0
3 A3 B3 K1 C1 D1
In [95]: result = pd.merge(
....: left, right, left_on="key", right_index=True, how="left", sort=False
....: )
....:
In [96]: result
Out[96]:
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K0 C0 D0
3 A3 B3 K1 C1 D1
Pour joindre plusieurs clés, le DataFrame passé doit avoir un MultiIndex :
To join on multiple keys, the passed DataFrame must have a MultiIndex:
In [97]: left = pd.DataFrame(
....: {
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: "key1": ["K0", "K0", "K1", "K2"],
....: "key2": ["K0", "K1", "K0", "K1"],
....: }
....: )
....:
In [98]: index = pd.MultiIndex.from_tuples(
....: [("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
....: )
....:
In [99]: right = pd.DataFrame(
....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
....: )
....:
In [100]: result = left.join(right, on=["key1", "key2"])
In [101]: result
Out[101]:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A1 B1 K0 K1 NaN NaN
2 A2 B2 K1 K0 C1 D1
3 A3 B3 K2 K1 C3 D3
La valeur par défaut pour DataFrame.join est d’effectuer une jointure gauche qui utilise uniquement les clés trouvées dans l’appelant DataFrame. D’autres types de jointure peuvent être spécifiés avec how.
The default for DataFrame.join is to perform a left join which uses only the keys found in the calling DataFrame. Other join types can be specified with how.
In [102]: result = left.join(right, on=["key1", "key2"], how="inner")
In [103]: result
Out[103]:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
2 A2 B2 K1 K0 C1 D1
3 A3 B3 K2 K1 C3 D3
Joining a single Index to a MultiIndex
Vous pouvez joindre un DataFrame avec un Index à un DataFrame avec un MultiIndex sur un niveau. Le name du Index correspondra au nom de niveau du MultiIndex.
You can join a DataFrame with a Index to a DataFrame with a MultiIndex on a level. The name of the Index with match the level name of the MultiIndex.
In [104]: left = pd.DataFrame(
.....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
.....: index=pd.Index(["K0", "K1", "K2"], name="key"),
.....: )
.....:
In [105]: index = pd.MultiIndex.from_tuples(
.....: [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
.....: names=["key", "Y"],
.....: )
.....:
In [106]: right = pd.DataFrame(
.....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
.....: index=index,
.....: )
.....:
In [107]: result = left.join(right, how="inner")
In [108]: result
Out[108]:
A B C D
key Y
K0 Y0 A0 B0 C0 D0
K1 Y1 A1 B1 C1 D1
K2 Y2 A2 B2 C2 D2
Y3 A2 B2 C3 D3
Joining with two MultiIndex
Le MultiIndex de l’argument d’entrée doit être complètement utilisé dans la jointure et est un sous-ensemble des indices dans l’argument de gauche.
The MultiIndex of the input argument must be completely used in the join and is a subset of the indices in the left argument.
In [109]: leftindex = pd.MultiIndex.from_product(
.....: [list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
.....: )
.....:
In [110]: left = pd.DataFrame({"v1": range(12)}, index=leftindex)
In [111]: left
Out[111]:
v1
abc xy num
a x 1 0
2 1
y 1 2
2 3
b x 1 4
2 5
y 1 6
2 7
c x 1 8
2 9
y 1 10
2 11
In [112]: rightindex = pd.MultiIndex.from_product(
.....: [list("abc"), list("xy")], names=["abc", "xy"]
.....: )
.....:
In [113]: right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)
In [114]: right
Out[114]:
v2
abc xy
a x 100
y 200
b x 300
y 400
c x 500
y 600
In [115]: left.join(right, on=["abc", "xy"], how="inner")
Out[115]:
v1 v2
abc xy num
a x 1 0 100
2 1 100
y 1 2 200
2 3 200
b x 1 4 300
2 5 300
y 1 6 400
2 7 400
c x 1 8 500
2 9 500
y 1 10 600
2 11 600
In [116]: leftindex = pd.MultiIndex.from_tuples(
.....: [("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
.....: )
.....:
In [117]: left = pd.DataFrame(
.....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
.....: )
.....:
In [118]: rightindex = pd.MultiIndex.from_tuples(
.....: [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
.....: )
.....:
In [119]: right = pd.DataFrame(
.....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
.....: )
.....:
In [120]: result = pd.merge(
.....: left.reset_index(), right.reset_index(), on=["key"], how="inner"
.....: ).set_index(["key", "X", "Y"])
.....:
In [121]: result
Out[121]:
A B C D
key X Y
K0 X0 Y0 A0 B0 C0 D0
X1 Y0 A1 B1 C0 D0
K1 X2 Y1 A2 B2 C1 D1
Merging on a combination of columns and index levels
Les chaînes passées comme paramètres on, left_on et right_on peuvent faire référence à des noms de colonnes ou à des noms de niveau d’index. Ceci permet de fusionner les instances DataFrame sur une combinaison de niveaux d’index et de colonnes sans réinitialiser les index.
Strings passed as the on, left_on, and right_on parameters may refer to either column names or index level names. This enables merging DataFrame instances on a combination of index levels and columns without resetting indexes.
In [122]: left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")
In [123]: left = pd.DataFrame(
.....: {
.....: "A": ["A0", "A1", "A2", "A3"],
.....: "B": ["B0", "B1", "B2", "B3"],
.....: "key2": ["K0", "K1", "K0", "K1"],
.....: },
.....: index=left_index,
.....: )
.....:
In [124]: right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")
In [125]: right = pd.DataFrame(
.....: {
.....: "C": ["C0", "C1", "C2", "C3"],
.....: "D": ["D0", "D1", "D2", "D3"],
.....: "key2": ["K0", "K0", "K0", "K1"],
.....: },
.....: index=right_index,
.....: )
.....:
In [126]: result = left.merge(right, on=["key1", "key2"])
In [127]: result
Out[127]:
A B key2 C D
key1
K0 A0 B0 K0 C0 D0
K1 A2 B2 K0 C1 D1
K2 A3 B3 K1 C3 D3
Lorsque DataFrame sont joints en utilisant uniquement certains niveaux d’un MultiIndex, les niveaux supplémentaires seront supprimés de la jointure résultante. Pour conserver ces niveaux, utilisez DataFrame.reset_index() sur ces noms de niveaux pour déplacer ces niveaux vers des colonnes avant la jointure. |
When DataFrame are joined using only some of the levels of a MultiIndex, the extra levels will be dropped from the resulting join. To preserve those levels, use DataFrame.reset_index() on those level names to move those levels to columns prior to the join. |
Joining multiple DataFrame
Une liste ou un tuple de :class:`DataFrame` peut également être transmis à join() pour les joindre ensemble sur leurs index.
A list or tuple of :class:`DataFrame` can also be passed to join() to join them together on their indexes.
In [128]: right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])
In [129]: result = left.join([right, right2])
DataFrame.combine_first()
DataFrame.combine_first() 从另一个 DataFrame 中用非缺失值更新一个 DataFrame 的缺失值,在对应的位置中。
DataFrame.combine_first() update missing values from one DataFrame with the non-missing values in another DataFrame in the corresponding location.
In [130]: df1 = pd.DataFrame(
.....: [[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
.....: )
.....:
In [131]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])
In [132]: result = df1.combine_first(df2)
In [133]: result
Out[133]:
0 1 2
0 NaN 3.0 5.0
1 -4.6 NaN -8.2
2 -5.0 7.0 4.0
merge_ordered()
merge_ordered() 将订单数据(例如数字或时间序列数据)与 fill_method 的缺失数据可选项填充结合起来。
merge_ordered() combines order data such as numeric or time series data with optional filling of missing data with fill_method.
In [134]: left = pd.DataFrame(
.....: {"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
.....: )
.....:
In [135]: right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})
In [136]: pd.merge_ordered(left, right, fill_method="ffill", left_by="s")
Out[136]:
k lv s rv
0 K0 1.0 a NaN
1 K1 1.0 a 1.0
2 K2 1.0 a 2.0
3 K4 1.0 a 3.0
4 K1 2.0 b 1.0
5 K2 2.0 b 2.0
6 K4 2.0 b 3.0
7 K1 3.0 c 1.0
8 K2 3.0 c 2.0
9 K4 3.0 c 3.0
10 K1 NaN d 1.0
11 K2 4.0 d 2.0
12 K4 4.0 d 3.0
merge_asof()
merge_asof() 类似于按顺序连接(left-join),但匹配基于最接近的键,而不是相等的键。对于 left DataFrame 中的每行,将在 right DataFrame 中选择最后一行,其中 on 键小于左键。两个 DataFrame 都必须按键进行排序。
merge_asof() is similar to an ordered left-join except that mactches are on the nearest key rather than equal keys. For each row in the left DataFrame, the last row in the right DataFrame are selected where the on key is less than the left’s key. Both DataFrame must be sorted by the key.
或者,一个 merge_asof() 可以通过匹配 by 键以及按 on 键最接近的匹配来执行分组合并。
Optionally an merge_asof() can perform a group-wise merge by matching the by key in addition to the nearest match on the on key.
In [137]: trades = pd.DataFrame(
.....: {
.....: "time": pd.to_datetime(
.....: [
.....: "20160525 13:30:00.023",
.....: "20160525 13:30:00.038",
.....: "20160525 13:30:00.048",
.....: "20160525 13:30:00.048",
.....: "20160525 13:30:00.048",
.....: ]
.....: ),
.....: "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
.....: "price": [51.95, 51.95, 720.77, 720.92, 98.00],
.....: "quantity": [75, 155, 100, 100, 100],
.....: },
.....: columns=["time", "ticker", "price", "quantity"],
.....: )
.....:
In [138]: quotes = pd.DataFrame(
.....: {
.....: "time": pd.to_datetime(
.....: [
.....: "20160525 13:30:00.023",
.....: "20160525 13:30:00.023",
.....: "20160525 13:30:00.030",
.....: "20160525 13:30:00.041",
.....: "20160525 13:30:00.048",
.....: "20160525 13:30:00.049",
.....: "20160525 13:30:00.072",
.....: "20160525 13:30:00.075",
.....: ]
.....: ),
.....: "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
.....: "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
.....: "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
.....: },
.....: columns=["time", "ticker", "bid", "ask"],
.....: )
.....:
In [139]: trades
Out[139]:
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100
In [140]: quotes
Out[140]:
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
In [141]: pd.merge_asof(trades, quotes, on="time", by="ticker")
Out[141]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
2ms 中的 merge_asof() 在报价时间和交易时间之间。
merge_asof() within 2ms between the quote time and the trade time.
In [142]: pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms"))
Out[142]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
10ms 中的 merge_asof() 在报价时间和交易时间之间,并排除时间中的完全匹配。请注意,尽管我们排除了完全匹配(报价),但之前的报价确实会传播到时间中的那个点。
merge_asof() within 10ms between the quote time and the trade time and exclude exact matches on time. Note that though we exclude the exact matches (of the quotes), prior quotes do propagate to that point in time.
In [143]: pd.merge_asof(
.....: trades,
.....: quotes,
.....: on="time",
.....: by="ticker",
.....: tolerance=pd.Timedelta("10ms"),
.....: allow_exact_matches=False,
.....: )
.....:
Out[143]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN
3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
compare()
Series.compare() 和 DataFrame.compare() 方法分别允许你比较两个 DataFrame 或 Series,并总结它们的差异。
The Series.compare() and DataFrame.compare() methods allow you to compare two DataFrame or Series, respectively, and summarize their differences.
In [144]: df = pd.DataFrame(
.....: {
.....: "col1": ["a", "a", "b", "b", "a"],
.....: "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
.....: "col3": [1.0, 2.0, 3.0, 4.0, 5.0],
.....: },
.....: columns=["col1", "col2", "col3"],
.....: )
.....:
In [145]: df
Out[145]:
col1 col2 col3
0 a 1.0 1.0
1 a 2.0 2.0
2 b 3.0 3.0
3 b NaN 4.0
4 a 5.0 5.0
In [146]: df2 = df.copy()
In [147]: df2.loc[0, "col1"] = "c"
In [148]: df2.loc[2, "col3"] = 4.0
In [149]: df2
Out[149]:
col1 col2 col3
0 c 1.0 1.0
1 a 2.0 2.0
2 b 3.0 4.0
3 b NaN 4.0
4 a 5.0 5.0
In [150]: df.compare(df2)
Out[150]:
col1 col3
self other self other
0 a c NaN NaN
2 NaN NaN 3.0 4.0
默认情况下,如果两个相应的值相等,它们将显示为 NaN。此外,如果一整行/列中的所有值都为 NaN,则该行/列将从结果中省略。剩下的差异将在列上对齐。
By default, if two corresponding values are equal, they will be shown as NaN. Furthermore, if all values in an entire row / column, the row / column will be omitted from the result. The remaining differences will be aligned on columns.
在行上堆叠差异。
Stack the differences on rows.
In [151]: df.compare(df2, align_axis=0)
Out[151]:
col1 col3
0 self a NaN
other c NaN
2 self NaN 3.0
other NaN 4.0
保留带有 keep_shape=True 的所有原始行和列。
Keep all original rows and columns with keep_shape=True
In [152]: df.compare(df2, keep_shape=True)
Out[152]:
col1 col2 col3
self other self other self other
0 a c NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN 3.0 4.0
3 NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN
即使它们相等,也会保留所有原始值。
Keep all the original values even if they are equal.
In [153]: df.compare(df2, keep_shape=True, keep_equal=True)
Out[153]:
col1 col2 col3
self other self other self other
0 a c 1.0 1.0 1.0 1.0
1 a a 2.0 2.0 2.0 2.0
2 b b 3.0 3.0 3.0 4.0
3 b b NaN NaN 4.0 4.0
4 a a 5.0 5.0 5.0 5.0