Python Data Science 简明教程

Python - Data Cleansing

缺失数据在实际生活中始终是一个问题。由于由缺失值导致的数据质量低,机器学习和数据挖掘等领域在其模型预测的准确性方面面临严重问题。在这些领域,缺失值处理是使其模型更准确、更有效的重点。

When and Why Is Data Missed?

我们考虑一下一个产品的在线调查。很多时候,人们不会分享与他们相关的所有信息。很少有人分享他们的体验,但不会分享他们使用该产品的时间;很少有人分享他们使用该产品的时间、体验但不会分享他们的联系信息。因此,或多或少总有部分数据缺失,而且这在实时中是非常常见的。

现在让我们看看如何使用 Pandas 处理缺失值(例如 NA 或 NaN)。

# import the pandas library
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df

它的 output 如下所示 −

         one        two      three
a   0.077988   0.476149   0.965836
b        NaN        NaN        NaN
c  -0.390208  -0.551605  -2.301950
d        NaN        NaN        NaN
e  -2.000303  -0.788201   1.510072
f  -0.930230  -0.670473   1.146615
g        NaN        NaN        NaN
h   0.085100   0.532791   0.887415

使用 reindexing,我们创建了一个包含缺失值的 DataFrame。在输出中, NaN 意味着 Not a Number.

Check for Missing Values

为了使检测缺失值更容易(并且跨不同的数组数据类型),Pandas 提供了 isnull()notnull() 函数,它们也是 Series 和 DataFrame 对象上的方法 −

Example

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df['one'].isnull()

它的 output 如下所示 −

a  False
b  True
c  False
d  True
e  False
f  False
g  True
h  False
Name: one, dtype: bool

Cleaning / Filling Missing Data

Pandas 提供了多种方法来清理缺失值。fillna 函数可以通过几种方式用非空数据“填充”NA 值,我们已在以下部分中进行了说明。

Replace NaN with a Scalar Value

以下程序显示了如何将“NaN”替换为“0”。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one',
'two', 'three'])
df = df.reindex(['a', 'b', 'c'])
print df
print ("NaN replaced with '0':")
print df.fillna(0)

它的 output 如下所示 −

         one        two     three
a  -0.576991  -0.741695  0.553172
b        NaN        NaN       NaN
c   0.744328  -1.735166  1.749580

NaN replaced with '0':
         one        two     three
a  -0.576991  -0.741695  0.553172
b   0.000000   0.000000  0.000000
c   0.744328  -1.735166  1.749580

在这里,我们用值 0 来填充;相反,我们也可以用任何其他值来填充。

Fill NA Forward and Backward

利用重新索引章节中讨论的填充概念,我们将填充缺失值。

Method

Action

pad/fill

Fill methods Forward

bfill/backfill

Fill methods Backward

Example

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df.fillna(method='pad')

它的 output 如下所示 −

         one        two      three
a   0.077988   0.476149   0.965836
b   0.077988   0.476149   0.965836
c  -0.390208  -0.551605  -2.301950
d  -0.390208  -0.551605  -2.301950
e  -2.000303  -0.788201   1.510072
f  -0.930230  -0.670473   1.146615
g  -0.930230  -0.670473   1.146615
h   0.085100   0.532791   0.887415

Drop Missing Values

如果你只想排除缺失值,那么使用 dropna 函数以及 axis 参数。默认情况下,axis=0,即沿着行,这意味着如果一行内的任何值都为 NA,则整行都会被排除在外。

Example

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print df.dropna()

它的 output 如下所示 −

         one        two      three
a   0.077988   0.476149   0.965836
c  -0.390208  -0.551605  -2.301950
e  -2.000303  -0.788201   1.510072
f  -0.930230  -0.670473   1.146615
h   0.085100   0.532791   0.887415

Replace Missing (or) Generic Values

很多时候,我们必须用某个特定值替换一个通用值。我们可以通过应用 replace 方法来实现此目的。

使用标量值替换 NA 与 fillna() 函数的行为相同。

Example

import pandas as pd
import numpy as np
df = pd.DataFrame({'one':[10,20,30,40,50,2000],
'two':[1000,0,30,40,50,60]})
print df.replace({1000:10,2000:60})

它的 output 如下所示 −

   one  two
0   10   10
1   20    0
2   30   30
3   40   40
4   50   50
5   60   60