Machine Learning 简明教程

Machine Learning - Required Skills

机器学习是一个快速发展的领域,它需要技术技能和软技能的结合才能成功。以下是机器学习所需的一些关键技能 −

Machine learning is a rapidly growing field that requires a combination of technical and soft skills to be successful. Here are some of the key skills required for machine learning −

Programming Skills

机器学习要求具备坚实的编程技能基础,特别是在 Python、R 和 Java 等语言方面。编程能力使数据科学家能够构建、测试和部署机器学习模型。

Machine learning requires a solid foundation in programming skills, particularly in languages such as Python, R, and Java. Proficiency in programming allows data scientists to build, test, and deploy machine learning models.

Statistics and Mathematics

对统计学和数学的深刻理解对于机器学习至关重要。数据科学家必须能够理解和应用统计模型、算法和方法来分析和解释数据。

A strong understanding of statistics and mathematics is essential for machine learning. Data scientists must be able to understand and apply statistical models, algorithms, and methods to analyze and interpret data.

为了让你简要了解需要获得哪些技能,让我们讨论一些示例:

To give you a brief idea of what skills you need to acquire, let us discuss some examples −

Mathematical Notation

大多数机器学习算法在很大程度上基于数学。你需要了解的数学水平可能只是初学者水平。重要的是你应该能够阅读数学家在方程式中使用的符号。例如 - 如果你能够阅读符号并理解其含义,那么你就可以学习机器学习了。如果没有,你可能需要复习一下你的数学知识。

Most of the machine learning algorithms are heavily based on mathematics. The level of mathematics that you need to know is probably just a beginner level. What is important is that you should be able to read the notation that mathematicians use in their equations. For example - if you are able to read the notation and comprehend what it means, you are ready for learning machine learning. If not, you may need to brush up your mathematics knowledge.

f_{AN}(net-\theta)=\begin{cases}\gamma & if\:net-\theta \geq \epsilon\\net-\theta & if - \epsilon< net-\theta <\epsilon\\ -\gamma & if\:net-\theta\leq- \epsilon\end{cases}

\displaystyle\\\max\limits_{\alpha}\begin{bmatrix}\displaystyle\sum\limits_{i=1}^m \alpha-\frac{1}{2}\displaystyle\sum\limits_{i,j=1}^m label^\left(\begin{array}{c}i\\ \end{array}\right)\cdot\:label^\left(\begin{array}{c}j\\ \end{array}\right)\cdot\:a_{i}\cdot\:a_{j}\langle x^\left(\begin{array}{c}i\\ \end{array}\right),x^\left(\begin{array}{c}j\\ \end{array}\right)\rangle \end{bmatrix}

\displaystyle\\\max\limits_{\alpha}\begin{bmatrix}\displaystyle\sum\limits_{i=1}^m \alpha-\frac{1}{2}\displaystyle\sum\limits_{i,j=1}^m label^\left(\begin{array}{c}i\\ \end{array}\right)\cdot\:label^\left(\begin{array}{c}j\\ \end{array}\right)\cdot\:a_{i}\cdot\:a_{j}\langle x^\left(\begin{array}{c}i\\ \end{array}\right),x^\left(\begin{array}{c}j\\ \end{array}\right)\rangle \end{bmatrix}

f_{AN}(net-\theta)=\left(\frac{e {\lambda(net-\theta)}-e {-\lambda(net-\theta)}}{e {\lambda(net-\theta)}+e {-\lambda(net-\theta)}}\right)\;

f_{AN}(net-\theta)=\left(\frac{e{\lambda(net-\theta)}-e{-\lambda(net-\theta)}}{e{\lambda(net-\theta)}+e{-\lambda(net-\theta)}}\right)\;

Probability Theory

这是一个测试你当前概率论知识的例子:使用条件概率进行分类。

Here is an example to test your current knowledge of probability theory: Classifying with conditional probabilities.

p(c_{i}|x,y)\;=\frac{p(x,y|c_{i})\;p(c_{i})\;}{p(x,y)\;}

使用这些定义,我们可以定义贝叶斯分类规则—

With these definitions, we can define the Bayesian classification rule −

  1. If P(c1|x, y) > P(c2|x, y) , the class is c1 .

  2. If P(c1|x, y) < P(c2|x, y) , the class is c2 .

Optimization Problem

这是一个优化函数

Here is an optimization function

\displaystyle\\\max\limits_{\alpha}\begin{bmatrix}\displaystyle\sum\limits_{i=1}^m \alpha-\frac{1}{2}\displaystyle\sum\limits_{i,j=1}^m label^\left(\begin{array}{c}i\\ \end{array}\right)\cdot\:label^\left(\begin{array}{c}j\\ \end{array}\right)\cdot\:a_{i}\cdot\:a_{j}\langle x^\left(\begin{array}{c}i\\ \end{array}\right),x^\left(\begin{array}{c}j\\ \end{array}\right)\rangle \end{bmatrix}

\displaystyle\\\max\limits_{\alpha}\begin{bmatrix}\displaystyle\sum\limits_{i=1}^m \alpha-\frac{1}{2}\displaystyle\sum\limits_{i,j=1}^m label^\left(\begin{array}{c}i\\ \end{array}\right)\cdot\:label^\left(\begin{array}{c}j\\ \end{array}\right)\cdot\:a_{i}\cdot\:a_{j}\langle x^\left(\begin{array}{c}i\\ \end{array}\right),x^\left(\begin{array}{c}j\\ \end{array}\right)\rangle \end{bmatrix}

受以下约束的限制—

Subject to the following constraints −

\alpha\geq0,并且\:\displaystyle\sum\limits_{i-1}^m \alpha_{i}\cdot\:label^\left(\begin{array}{c}i\\ \end{array}\right)=0

\alpha\geq0,and\:\displaystyle\sum\limits_{i-1}^m \alpha_{i}\cdot\:label^\left(\begin{array}{c}i\\ \end{array}\right)=0

如果你能够理解以上内容,那么你已经准备好了。

If you can read and understand the above, you are all set.

Data Preprocessing

为机器学习准备数据需要数据清理、数据转换和数据归一化的知识。这涉及识别并更正数据中的错误、缺失值和不一致性。

Preparing data for machine learning requires knowledge of data cleaning, data transformation, and data normalization. This involves identifying and correcting errors, missing values, and inconsistencies in the data.

Data Visualization

数据可视化是创建数据的图形表示以帮助用户理解和解释复杂数据集的过程。数据科学家必须能够创建有效的可视化,以传达从数据中获得的见解。

Data visualization is the process of creating graphical representations of data to help users understand and interpret complex data sets. Data scientists must be able to create effective visualizations that communicate insights from the data.

在很多情况下,你将需要理解各种可视化图,以了解你的数据分布并解释算法输出的结果。

In many cases, you will need to understand the various types of visualization plots to understand your data distribution and interpret the results of the algorithm’s output.

visualization plots

除了机器学习的以上理论方面,你还需要好的编程技能来编写这些算法。

Besides the above theoretical aspects of machine learning, you need good programming skills to code those algorithms.

Machine Learning Algorithms

机器学习需要各种算法的知识,例如回归、决策树、随机森林、K 近邻、支持向量机和神经网络。了解这些算法的优点和缺点对于构建有效的机器学习模型至关重要。

Machine learning requires knowledge of various algorithms, such as regression, decision trees, random forests, k-nearest neighbors, support vector machines, and neural networks. Understanding the strengths and weaknesses of these algorithms is critical for building effective machine learning models.

Deep Learning

深度学习是机器学习的一个子领域,涉及训练深度神经网络以分析复杂的数据集。深度学习需要对神经网络、卷积神经网络、循环神经网络和其他相关主题有深入的了解。

Deep learning is a subfield of machine learning that involves training deep neural networks to analyze complex data sets. Deep learning requires a strong understanding of neural networks, convolutional neural networks, recurrent neural networks, and other related topics.

Natural Language Processing

自然语言处理 (NLP) 是人工智能的一个分支,专注于使用自然语言在计算机和人类之间的交互。NLP 需要掌握情感分析、文本分类和命名实体识别等技术。

Natural language processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans using natural language. NLP requires knowledge of techniques such as sentiment analysis, text classification, and named entity recognition.

Problem-solving Skills

机器学习需要强大的问题解决能力,包括识别问题、提出假设和制定解决方案的能力。数据科学家必须有创造性和逻辑思维能力,以便为复杂问题制定有效的解决方法。

Machine learning requires strong problem-solving skills, including the ability to identify problems, generate hypotheses, and develop solutions. Data scientists must be able to think creatively and logically to develop effective solutions to complex problems.

Communication Skills

沟通能力对数据科学家来说至关重要,因为他们必须能够向非技术利益相关者解释复杂的技术概念。数据科学家必须能够以清晰简洁的方式传达其分析结果及其发现的含义。

Communication skills are essential for data scientists, as they must be able to explain complex technical concepts to non-technical stakeholders. Data scientists must be able to communicate the results of their analysis and the implications of their findings in a clear and concise manner.

Business Acumen

机器学习用于解决业务问题,因此,了解业务背景和将机器学习应用于业务问题的能力至关重要。

Machine learning is used to solve business problems, and therefore, understanding the business context and the ability to apply machine learning to business problems is essential.

总的来说,机器学习需要广泛的技能,包括技术、数学和软技能。在这一领域取得成功,数据科学家必须能够将这些技能结合起来,开发出有效的机器学习模型来解决复杂的业务问题。

Overall, machine learning requires a broad range of skills, including technical, mathematical, and soft skills. To be successful in this field, data scientists must be able to combine these skills to develop effective machine learning models that solve complex business problems.