Numpy 简明教程
NumPy - Data Types
NumPy 支持的数值类型比 Python 所支持的类型多得多。下表显示了 NumPy 中定义的不同标量数据类型。
NumPy supports a much greater variety of numerical types than Python does. The following table shows different scalar data types defined in NumPy.
Sr.No. |
Data Types & Description |
1 |
bool_ Boolean (True or False) stored as a byte |
2 |
int_ Default integer type (same as C long; normally either int64 or int32) |
3 |
intc Identical to C int (normally int32 or int64) |
4 |
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64) |
5 |
int8 Byte (-128 to 127) |
6 |
int16 Integer (-32768 to 32767) |
7 |
int32 Integer (-2147483648 to 2147483647) |
8 |
int64 Integer (-9223372036854775808 to 9223372036854775807) |
9 |
uint8 Unsigned integer (0 to 255) |
10 |
uint16 Unsigned integer (0 to 65535) |
11 |
uint32 Unsigned integer (0 to 4294967295) |
12 |
uint64 Unsigned integer (0 to 18446744073709551615) |
13 |
float_ Shorthand for float64 |
14 |
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa |
15 |
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa |
16 |
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa |
17 |
complex_ Shorthand for complex128 |
18 |
complex64 Complex number, represented by two 32-bit floats (real and imaginary components) |
19 |
complex128 Complex number, represented by two 64-bit floats (real and imaginary components) |
NumPy 数值类型是 dtype(数据类型)对象的实例,每个实例具有独特的特征。dtype 可用作 np.bool_、np.float32 等。
NumPy numerical types are instances of dtype (data-type) objects, each having unique characteristics. The dtypes are available as np.bool_, np.float32, etc.
Data Type Objects (dtype)
数据类型对象描述了与数组相对应的固定内存块的解读,具体取决于以下几个方面:
A data type object describes interpretation of fixed block of memory corresponding to an array, depending on the following aspects −
-
Type of data (integer, float or Python object)
-
Size of data
-
Byte order (little-endian or big-endian)
-
In case of structured type, the names of fields, data type of each field and part of the memory block taken by each field.
-
If data type is a subarray, its shape and data type
通过在数据类型前面添加'<'或'>'来确定字节顺序。'<'表示编码是小端序(最小重要位存储在最小地址)。'>'表示编码是大端序(最大重要位存储在最小地址)。
The byte order is decided by prefixing '<' or '>' to data type. '<' means that encoding is little-endian (least significant is stored in smallest address). '>' means that encoding is big-endian (most significant byte is stored in smallest address).
dtype对象使用以下语法构造 -
A dtype object is constructed using the following syntax −
numpy.dtype(object, align, copy)
参数是 -
The parameters are −
-
Object − To be converted to data type object
-
Align − If true, adds padding to the field to make it similar to C-struct
-
Copy − Makes a new copy of dtype object. If false, the result is reference to builtin data type object
Example 1
# using array-scalar type
import numpy as np
dt = np.dtype(np.int32)
print dt
输出如下 −
The output is as follows −
int32
Example 2
#int8, int16, int32, int64 can be replaced by equivalent string 'i1', 'i2','i4', etc.
import numpy as np
dt = np.dtype('i4')
print dt
输出如下 −
The output is as follows −
int32
Example 3
# using endian notation
import numpy as np
dt = np.dtype('>i4')
print dt
输出如下 −
The output is as follows −
>i4
以下示例显示结构化数据类型的使用。此处,应声明字段名称和相应标量数据类型。
The following examples show the use of structured data type. Here, the field name and the corresponding scalar data type is to be declared.
Example 4
# first create structured data type
import numpy as np
dt = np.dtype([('age',np.int8)])
print dt
输出如下 −
The output is as follows −
[('age', 'i1')]
Example 5
# now apply it to ndarray object
import numpy as np
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print a
输出如下 −
The output is as follows −
[(10,) (20,) (30,)]
Example 6
# file name can be used to access content of age column
import numpy as np
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print a['age']
输出如下 −
The output is as follows −
[10 20 30]
Example 7
以下示例定义一个名为 student 的结构化数据类型,该数据类型具有字符串字段’name',一个 integer field 'age’和一个 float field 'marks'。此dtype应用于ndarray对象。
The following examples define a structured data type called student with a string field 'name', an integer field 'age' and a float field 'marks'. This dtype is applied to ndarray object.
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
print student
输出如下 −
The output is as follows −
[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])
Example 8
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
print a
输出如下 −
The output is as follows −
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
每个内置数据类型都具有唯一标识它的字符代码。
Each built-in data type has a character code that uniquely identifies it.
-
'b' − boolean
-
'i' − (signed) integer
-
'u' − unsigned integer
-
'f' − floating-point
-
'c' − complex-floating point
-
'm' − timedelta
-
'M' − datetime
-
'O' − (Python) objects
-
'S', 'a' − (byte-)string
-
'U' − Unicode
-
'V' − raw data (void)