Scipy 简明教程

SciPy - Introduction

SciPy,读作 Sigh Pi,是一个科学的 Python 开源库,由 BSD 授权,用于执行数学、科学和工程计算。

SciPy, pronounced as Sigh Pi, is a scientific python open source, distributed under the BSD licensed library to perform Mathematical, Scientific and Engineering Computations.

SciPy 库依赖于 NumPy,后者提供便捷且快速的 N 维数组操作。SciPy 库可与 NumPy 数组一起使用,并提供许多用户友好的高效数值实践,例如数值积分和优化的例程。它们一起在所有流行的操作系统上运行,快速安装,并且免费。NumPy 和 SciPy 易于使用,但功能强大,足以被一些世界领先的科学家和工程师依赖。

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays and provides many user-friendly and efficient numerical practices such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install and are free of charge. NumPy and SciPy are easy to use, but powerful enough to depend on by some of the world’s leading scientists and engineers.

SciPy Sub-packages

SciPy 被组织成涵盖不同科学计算领域的子包。它们总结在以下表中 −

SciPy is organized into sub-packages covering different scientific computing domains. These are summarized in the following table −

scipy.cluster

Vector quantization / Kmeans

scipy.constants

Physical and mathematical constants

scipy.fftpack

Fourier transform

scipy.integrate

Integration routines

scipy.interpolate

Interpolation

scipy.io

Data input and output

scipy.linalg

Linear algebra routines

scipy.ndimage

n-dimensional image package

scipy.odr

Orthogonal distance regression

scipy.optimize

Optimization

scipy.signal

Signal processing

scipy.sparse

Sparse matrices

scipy.spatial

Spatial data structures and algorithms

scipy.special

Any special mathematical functions

scipy.stats

Statistics

Data Structure

SciPy 使用的多维数组是 NumPy 模块提供的一个基本数据结构。NumPy 为线性代数、傅里叶变换和随机数字生成提供了一些功能,但不如 SciPy 中同等功能那样通用。

The basic data structure used by SciPy is a multidimensional array provided by the NumPy module. NumPy provides some functions for Linear Algebra, Fourier Transforms and Random Number Generation, but not with the generality of the equivalent functions in SciPy.