R 简明教程

R - XML Files

XML 是一种共享文件格式和数据于万维网、内部网和其他地方(使用标准 ASCII 文本)的文件格式。它代表可扩展标记语言 (XML)。类似于 HTML,它包含标记标签。但与 HTML(其中标记标签描述页面的结构)不同,在 XML 中标记标签描述包含在文件中数据的含义。

你可以使用 “XML” 包在 R 中读取 XML 文件。可以使用以下命令安装此包。

install.packages("XML")

Input Data

通过将以下数据复制到记事本之类的文本编辑器中创建 XML 文件。保存文件并使用 .xml 扩展名,然后选择 all files( . ) 作为文件类型。

<RECORDS>
   <EMPLOYEE>
      <ID>1</ID>
      <NAME>Rick</NAME>
      <SALARY>623.3</SALARY>
      <STARTDATE>1/1/2012</STARTDATE>
      <DEPT>IT</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>2</ID>
      <NAME>Dan</NAME>
      <SALARY>515.2</SALARY>
      <STARTDATE>9/23/2013</STARTDATE>
      <DEPT>Operations</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>3</ID>
      <NAME>Michelle</NAME>
      <SALARY>611</SALARY>
      <STARTDATE>11/15/2014</STARTDATE>
      <DEPT>IT</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>4</ID>
      <NAME>Ryan</NAME>
      <SALARY>729</SALARY>
      <STARTDATE>5/11/2014</STARTDATE>
      <DEPT>HR</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>5</ID>
      <NAME>Gary</NAME>
      <SALARY>843.25</SALARY>
      <STARTDATE>3/27/2015</STARTDATE>
      <DEPT>Finance</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>6</ID>
      <NAME>Nina</NAME>
      <SALARY>578</SALARY>
      <STARTDATE>5/21/2013</STARTDATE>
      <DEPT>IT</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>7</ID>
      <NAME>Simon</NAME>
      <SALARY>632.8</SALARY>
      <STARTDATE>7/30/2013</STARTDATE>
      <DEPT>Operations</DEPT>
   </EMPLOYEE>

   <EMPLOYEE>
      <ID>8</ID>
      <NAME>Guru</NAME>
      <SALARY>722.5</SALARY>
      <STARTDATE>6/17/2014</STARTDATE>
      <DEPT>Finance</DEPT>
   </EMPLOYEE>

</RECORDS>

Reading XML File

使用 xmlParse() 函数通过 R 读取 XML 文件。它作为列表存储在 R 中。

# Load the package required to read XML files.
library("XML")

# Also load the other required package.
library("methods")

# Give the input file name to the function.
result <- xmlParse(file = "input.xml")

# Print the result.
print(result)

当我们执行上述代码时,会产生以下结果 -

1
Rick
623.3
1/1/2012
IT

2
Dan
515.2
9/23/2013
Operations

3
Michelle
611
11/15/2014
IT

4
Ryan
729
5/11/2014
HR

5
Gary
843.25
3/27/2015
Finance

6
Nina
578
5/21/2013
IT

7
Simon
632.8
7/30/2013
Operations

8
Guru
722.5
6/17/2014
Finance

Get Number of Nodes Present in XML File

# Load the packages required to read XML files.
library("XML")
library("methods")

# Give the input file name to the function.
result <- xmlParse(file = "input.xml")

# Exract the root node form the xml file.
rootnode <- xmlRoot(result)

# Find number of nodes in the root.
rootsize <- xmlSize(rootnode)

# Print the result.
print(rootsize)

当我们执行上述代码时,会产生以下结果 -

output
[1] 8

Details of the First Node

让我们查看已解析文件的第一个记录。它将向我们提供顶级节点中存在的各种元素的思路。

# Load the packages required to read XML files.
library("XML")
library("methods")

# Give the input file name to the function.
result <- xmlParse(file = "input.xml")

# Exract the root node form the xml file.
rootnode <- xmlRoot(result)

# Print the result.
print(rootnode[1])

当我们执行上述代码时,会产生以下结果 -

$EMPLOYEE
   1
   Rick
   623.3
   1/1/2012
   IT


attr(,"class")
[1] "XMLInternalNodeList" "XMLNodeList"

Get Different Elements of a Node

# Load the packages required to read XML files.
library("XML")
library("methods")

# Give the input file name to the function.
result <- xmlParse(file = "input.xml")

# Exract the root node form the xml file.
rootnode <- xmlRoot(result)

# Get the first element of the first node.
print(rootnode[[1]][[1]])

# Get the fifth element of the first node.
print(rootnode[[1]][[5]])

# Get the second element of the third node.
print(rootnode[[3]][[2]])

当我们执行上述代码时,会产生以下结果 -

1
IT
Michelle

XML to Data Frame

若要有效地处理大型文件中的数据,我们会将 XML 文件中的数据作为数据框读取。然后处理数据框用于进行数据分析。

# Load the packages required to read XML files.
library("XML")
library("methods")

# Convert the input xml file to a data frame.
xmldataframe <- xmlToDataFrame("input.xml")
print(xmldataframe)

当我们执行上述代码时,会产生以下结果 -

      ID    NAME     SALARY    STARTDATE       DEPT
1      1    Rick     623.30    2012-01-01      IT
2      2    Dan      515.20    2013-09-23      Operations
3      3    Michelle 611.00    2014-11-15      IT
4      4    Ryan     729.00    2014-05-11      HR
5     NA    Gary     843.25    2015-03-27      Finance
6      6    Nina     578.00    2013-05-21      IT
7      7    Simon    632.80    2013-07-30      Operations
8      8    Guru     722.50    2014-06-17      Finance

由于数据现在可用作数据框,我们可以使用与数据框有关的函数来读取和操作文件。