Sympy 简明教程
SymPy - Solvers
由于符号 = 和 == 在 Python 中被定义为赋值和相等运算符,它们无法用于制定符号方程式。SymPy 提供 Eq() 函数来设置方程式。
>>> from sympy import *
>>> x,y=symbols('x y')
>>> Eq(x,y)
上面的代码片段给出的输出等同于以下表达式 −
x = y
由于仅当 x-y=0 时,x=y 才成立,因此上述方程式可以写成 −
>>> Eq(x-y,0)
上面的代码片段给出的输出等同于以下表达式 −
x − y = 0
SymPy 中的 solver 模块提供了 soveset() 函数,其原型如下 −
solveset(equation, variable, domain)
默认的域是 S.Complexes。使用 solveset() 函数,我们可以如下求解代数方程式 −
>>> solveset(Eq(x**2-9,0), x)
获得以下输出 −
{−3, 3}
>>> solveset(Eq(x**2-3*x, -2),x)
执行上面的代码片段后获得以下输出 −
{1,2}
solveset 的输出是有限集的解。如果没有解,则返回空集
>>> solveset(exp(x),x)
执行上面的代码片段后获得以下输出 −
$\varnothing$
Linear equation
我们必须使用 linsolve() 函数来求解线性方程。
举例来说,方程如下 −
x-y=4
x+y=1
>>> from sympy import *
>>> x,y=symbols('x y')
>>> linsolve([Eq(x-y,4),Eq( x + y ,1) ], (x, y))
执行上面的代码片段后获得以下输出 −
$\lbrace(\frac{5}{2},-\frac{3}{2})\rbrace$
linsolve() 函数也可以解矩阵形式表示的线性方程。
>>> a,b=symbols('a b')
>>> a=Matrix([[1,-1],[1,1]])
>>> b=Matrix([4,1])
>>> linsolve([a,b], (x,y))
如果执行以上代码片段,我们将得到以下输出 −
$\lbrace(\frac{5}{2},-\frac{3}{2})\rbrace$
Non-linear equation
为此,我们使用 nonlinsolve() 函数。此示例的方程 −
a2+a=0 a-b=0
>>> a,b=symbols('a b')
>>> nonlinsolve([a**2 + a, a - b], [a, b])
如果执行以上代码片段,我们将得到以下输出 −
$\lbrace(-1, -1),(0,0)\rbrace$
differential equation
首先,通过将 cls=Function 传递给 symbols 函数来创建一个未定义的函数。若要解微分方程,请使用 dsolve。
>>> x=Symbol('x')
>>> f=symbols('f', cls=Function)
>>> f(x)
执行上面的代码片段后获得以下输出 −
f(x)
此处 f(x) 是一个未评估的函数。其导数如下 −
>>> f(x).diff(x)
上面的代码片段给出的输出等同于以下表达式 −
$\frac{d}{dx}f(x)$
我们首先创建与以下微分方程对应的 Eq 对象
>>> eqn=Eq(f(x).diff(x)-f(x), sin(x))
>>> eqn
上面的代码片段给出的输出等同于以下表达式 −
$-f(x) + \frac{d}{dx}f(x)= \sin(x)$
>>> dsolve(eqn, f(x))
上面的代码片段给出的输出等同于以下表达式 −
$f(x)=(c1-\frac{e-xsin(x)}{2}-\frac{e-xcos(x)}{2})ex$