Automata Theory 简明教程
CFL Closure Property
无上下文语言在 − 下为 closed
Context-free languages are closed under −
-
Union
-
Concatenation
-
Kleene Star operation
Union
设 L1 和 L2 为两种无上下文语言。则 L1 ∪ L2 也是无上下文的。
Let L1 and L2 be two context free languages. Then L1 ∪ L2 is also context free.
Example
设 L1 = { anbn , n > 0}。相应的语法 G1 具有 P: S1 → aAb|ab
Let L1 = { anbn , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab
设 L2 = { cmdm , m ≥ 0}。相应的语法 G2 具有 P: S2 → cBb| ε
Let L2 = { cmdm , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε
L1 和 L2 的并集,L = L1 ∪ L2 = { anbn } ∪ { cmdm }
Union of L1 and L2, L = L1 ∪ L2 = { anbn } ∪ { cmdm }
相应的语法 G 将具有附加产生式 S → S1 | S2
The corresponding grammar G will have the additional production S → S1 | S2
Concatenation
如果 L1 和 L2 是无上下文语言,则 L1L2 也是无上下文的。
If L1 and L2 are context free languages, then L1L2 is also context free.
Kleene Star
若 L 是上下文无关语言,那么 L* 也是上下文无关语言。
If L is a context free language, then L* is also context free.
Example
设 L = { anbn ,n ≥ 0}。对应的文法 G 将具有 P: S → aAb| ε
Let L = { anbn , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε
Kleene 星号 L1 = { anbn }*
Kleene Star L1 = { anbn }*
对应的文法 G1 将具有附加产生式 S1 → SS1 | ε
The corresponding grammar G1 will have additional productions S1 → SS1 | ε
上下文无关语言在 − 下属于 not closed
Context-free languages are not closed under −
-
Intersection − If L1 and L2 are context free languages, then L1 ∩ L2 is not necessarily context free.
-
Intersection with Regular Language − If L1 is a regular language and L2 is a context free language, then L1 ∩ L2 is a context free language.
-
Complement − If L1 is a context free language, then L1’ may not be context free.