Automata Theory 简明教程
DFA Complement
如果 (Q, ∑, δ, q0, F) 是接受语言 L 的 DFA,则可以通过将接受状态与非接受状态以及反之互换来获得 DFA 的补集。
If (Q, ∑, δ, q0, F) be a DFA that accepts a language L, then the complement of the DFA can be obtained by swapping its accepting states with its non-accepting states and vice versa.
我们将举例并在下面详细说明 −
We will take an example and elaborate this below −
此 DFA 接受语言
This DFA accepts the language
L = {a, aa, aaa , …………. }
在字母表上
over the alphabet
∑ = {a, b}
所以,RE = a+。
So, RE = a+.
现在,我们将它的接受状态与其不接受状态互换,反之亦然,并且将获得以下状态:
Now we will swap its accepting states with its non-accepting states and vice versa and will get the following −
此 DFA 接受语言
This DFA accepts the language
Ľ = {ε, b, ab、bb、ba、…………… }
Ľ = {ε, b, ab ,bb,ba, …………… }
在字母表上
over the alphabet
∑ = {a, b}
Note - 如果我们希望对 NFA 求补,我们必须首先将其转换为 DFA,然后像在前面的方法中一样交换状态。
Note − If we want to complement an NFA, we have to first convert it to DFA and then have to swap states as in the previous method.