Computer Fundamentals 简明教程
Computer - Number System
当我们键入一些字母或单词时,计算机将其翻译成数字,因为计算机只能理解数字。计算机可以理解位置数字系统,其中只有几个符号称为数字,并且这些符号根据它们在数字中占据的位置表示不同的值。
When we type some letters or words, the computer translates them in numbers as computers can understand only numbers. A computer can understand the positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.
可以使用以下方法确定数字中每个数字的值 −
The value of each digit in a number can be determined using −
-
The digit
-
The position of the digit in the number
-
The base of the number system (where the base is defined as the total number of digits available in the number system)
Decimal Number System
我们在日常生活中使用的数字系统是十进制数字系统。十进制数字系统有 10 个基础,因为它使用了从 0 到 9 的 10 个数字。在十进制数字系统中,小数点左侧的连续位置表示个位、十位、百位、千位等。
The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands, and so on.
每个位置表示基础的特定指数(10)。例如,十进制数字 1234 由个位数字 4、十位数字 3、百位数字 2 和千位数字 1 组成。它的值可以写成
Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position. Its value can be written as
(1 x 1000)+ (2 x 100)+ (3 x 10)+ (4 x l)
(1 x 103)+ (2 x 102)+ (3 x 101)+ (4 x l00)
1000 + 200 + 30 + 4
1234
作为一名计算机程序员或 IT 专业人士,你应对计算机中经常使用的以下数字系统有所了解。
As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.
S.No. |
Number System and Description |
1 |
Binary Number System Base 2. Digits used : 0, 1 |
2 |
Octal Number System Base 8. Digits used : 0 to 7 |
3 |
Hexa Decimal Number System Base 16. Digits used: 0 to 9, Letters used : A- F |
Binary Number System
二进制数字系统的特征如下 −
Characteristics of the binary number system are as follows −
-
Uses two digits, 0 and 1
-
Also called as base 2 number system
-
Each position in a binary number represents a 0 power of the base (2). Example 20
-
Last position in a binary number represents a x power of the base (2). Example 2x where x represents the last position - 1.
Example
二进制数字:101012
Binary Number: 101012
计算十进制当量 −
Calculating Decimal Equivalent −
Step |
Binary Number |
Decimal Number |
Step 1 |
101012 |
1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 2010 |
Step 2 |
101012 |
(16 + 0 + 4 + 0 + 1)10 |
Step 3 |
101012 |
2110 |
Note − 101012 通常写为 10101。
Note − 101012 is normally written as 10101.
Octal Number System
八进制数字系统的特征如下 −
Characteristics of the octal number system are as follows −
-
Uses eight digits, 0,1,2,3,4,5,6,7
-
Also called as base 8 number system
-
Each position in an octal number represents a 0 power of the base (8). Example 80
-
Last position in an octal number represents a x power of the base (8). Example 8x where x represents the last position - 1
Example
八进制数:125708
Octal Number: 125708
计算十进制当量 −
Calculating Decimal Equivalent −
Step |
Octal Number |
Decimal Number |
Step 1 |
125708 |
1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 8010 |
Step 2 |
125708 |
(4096 + 1024 + 320 + 56 + 0)10 |
Step 3 |
125708 |
549610 |
Note - 125708 通常写成 12570。
Note − 125708 is normally written as 12570.
Hexadecimal Number System
十六进制数系统的特性包括:
Characteristics of hexadecimal number system are as follows −
-
Uses 10 digits and 6 letters, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
-
Letters represent the numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15
-
Also called as base 16 number system
-
Each position in a hexadecimal number represents a 0 power of the base (16). Example, 160
-
Last position in a hexadecimal number represents a x power of the base (16). Example 16x where x represents the last position - 1
Example
十六进制数:19FDE16
Hexadecimal Number: 19FDE16
计算十进制当量 −
Calculating Decimal Equivalent −
Step |
Binary Number |
Decimal Number |
Step 1 |
19FDE16 |
1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 16010 |
Step 2 |
19FDE16 |
1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 16010 |
Step 3 |
19FDE16 |
(65536+ 36864 + 3840 + 208 + 14)10 |
Step 4 |
19FDE16 |
10646210 |
Note - 19FDE16 通常写成 19FDE。
Note − 19FDE16 is normally written as 19FDE.