Java 简明教程
Java - Micro Benchmark
Java Benchmarking
*Benchmarking*是一种根据吞吐量、平均时间等技术检查应用程序或应用程序代码部分的性能。在*Java benchmarking*中,我们检查应用程序代码或正在使用的库的性能。这种*benchmarking*有助于在繁重负荷的情况下识别代码中的任何瓶颈,或识别应用程序的性能下降。
Benchmarking is a technique to check the performance of the application or of a section of application code in terms of throughput, average time taken, etc. In Java benchmarking, we check the performance of application code or of a library being used. This benchmarking helps in identifying any bottleneck in our code in case of heavy load or to identify the performance degradation of the application.
Importance of Java Benchmarking
应用程序性能是任何应用程序的一个非常重要的属性。编写不当的代码可能会导致应用程序无响应和高内存使用率,进而导致用户体验不佳,甚至使应用程序无法使用。为了解决此类问题,对应用程序进行基准测试至关重要。
Application performance is a very important attribute of any application. Poorly written code can lead to an unresponsive application, and high memory usage which can lead to poor user experience and even render the application unusable. In order to contain such issues, benchmarking an application is of utmost importance.
Java 开发人员应该能够在应用程序中查找问题,并使用基准测试技术修复它们,该技术可帮助识别迟缓的代码。
A Java Developer should be able to find issues in an application and fix them using the benchmarking technique which can help identify the sluggish code.
Java Benchmarking Techniques
开发人员为了*benchmark*应用程序代码、系统、库或任何组件,部署有多种技术。以下是一些重要技术。
There are multiple techniques that developers deploy in order to benchmark the application code, system, library, or any component. Following are a few of the important techniques.
Benchmarking Using Start/End Time
该技术简单且适用于一小部分代码,在调用代码之前得到纳秒单位内的开始时间,然后在执行方法之后,我们再次得到时间。现在使用结束时间与开始时间的差值可以大致了解代码花费了多少时间。该技术简单,但不可靠,因为性能可能会根据许多因素而变化,例如垃圾回收器正在执行的操作以及在那段时间内运行的任何系统进程。
This technique is easy and applicable on a small set of code, where we get the start time in nanoseconds before calling a code and then after executing the method, we again get the time. Now using the difference of end time and start time gives an idea of how much time the code is taking. This technique is simple but is not reliable as performance can vary based on many factors like garbage collectors in action, and any system process running during that time.
// get the start time
long startTime = System.nanoTime();
// execute the code to be benchmarked
long result = operations.timeTakingProcess();
// get the end time
long endTime = System.nanoTime();
// compute the time taken
long timeElapsed = endTime - startTime;
以下示例展示了一个示例,演示了上述概念。
Following example shows a running example to demonstrate the above concept.
package com.tutorialspoint;
public class Operations {
public static void main(String[] args) {
Operations operations = new Operations();
// get the start time
long startTime = System.nanoTime();
// execute the code to be benchmarked
long result = operations.timeTakingProcess();
// get the end time
long endTime = System.nanoTime();
// compute the time taken
long timeElapsed = endTime - startTime;
System.out.println("Sum of 100,00 natural numbers: " + result);
System.out.println("Elapsed time: " + timeElapsed + " nanoseconds");
}
// get the sum of first 100,000 natural numbers
public long timeTakingProcess() {
long sum = 0;
for(int i = 0; i < 100000; i++ ) {
sum += i;
}
return sum;
}
}
让我们编译并运行上述程序,这将生成以下结果 −
Let us compile and run the above program, this will produce the following result −
Sum of 100,00 natural numbers: 4999950000
Elapsed time: 1111300 nanoseconds
Benchmarking Using Java MicroBenchmark Harness (JMH)
Java Microbenchmark Harness (JMH) 是由 OpenJDK 社区开发的强大 benchmarking API ,用于检查代码的性能。它提供了一种基于注释的简单方法,可以获得 method / class 的基准数据,而开发人员端只需要最少的编码。
Java Microbenchmark Harness (JMH) is a powerful benchmarking API developed by the OpenJDK community to check the performance of a code. It provides a simple annotation-based approach to get benchmark data of a method/class with minimal coding required from the developer’s end.
Step 1−标注要进行基准测试的类/方法。
Step 1 − Annotate the class/method to be benchmarked.
@Benchmark
public long timeTakingProcess() {
}
Step 2 −准备基准选项并利用基准运行器运行。
Step 2 − Prepare the Benchmark options and run using Benchmark Runner.
// prepare the options
Options options = new OptionsBuilder()
.include(Operations.class.getSimpleName()) // use the class whose method is to be benchmarked
.forks(1) // create the fork(s) which will be used to run the iterations
.build();
// run the benchmark runner
new Runner(options).run();
要使用基准库,我们需要向 maven 项目的 pom.xml 中添加以下依赖项。
In order to use benchmarking library, we need to add following dependencies in pom.xml in case of maven project.
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-core</artifactId>
<version>1.35</version>
</dependency>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>1.35</version>
</dependency>
以下是用于运行上述基准测试示例的完整 pom.xml 代码。
Following is the complete code of the pom.xml which is used to run the above benchmarking example.
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.tutorialspoint</groupId>
<artifactId>test</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>test</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<jmh.version>1.35</jmh.version>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-core</artifactId>
<version>${jmh.version}</version>
</dependency>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>${jmh.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>17</source>
<target>17</target>
<annotationProcessorPaths>
<path>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>${jmh.version}</version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<finalName>benchmarks</finalName>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.openjdk.jmh.Main</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
以下是用于运行上述基准测试示例的完整类代码。
Following is the complete code of the class which is used to run the above benchmarking example.
package com.tutorialspoint.test;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
public class Operations {
public static void main(String[] args) throws RunnerException {
Options options = new OptionsBuilder()
.include(Operations.class.getSimpleName())
.forks(1)
.build();
new Runner(options).run();
}
// get the sum of first 100,000 natural numbers
@Benchmark
public long timeTakingProcess() {
long sum = 0;
for(int i = 0; i < 100000; i++ ) {
sum += i;
}
return sum;
}
}
让我们编译并运行上述程序,这将生成以下结果 −
Let us compile and run the above program, this will produce the following result −
# JMH version: 1.35
# VM version: JDK 21.0.2, Java HotSpot(TM) 64-Bit Server VM, 21.0.2+13-LTS-58
# VM invoker: C:\Program Files\Java\jdk-21\bin\java.exe
# VM options: -Dfile.encoding=UTF-8 -Dstdout.encoding=UTF-8 -Dstderr.encoding=UTF-8 -XX:+ShowCodeDetailsInExceptionMessages
# Blackhole mode: compiler (auto-detected, use -Djmh.blackhole.autoDetect=false to disable)
# Warmup: 5 iterations, 10 s each
# Measurement: 5 iterations, 10 s each
# Timeout: 10 min per iteration
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Throughput, ops/time
# Benchmark: com.tutorialspoint.test.Operations.timeTakingProcess
# Run progress: 0.00% complete, ETA 00:01:40
# Fork: 1 of 1
# Warmup Iteration 1: 33922.775 ops/s
# Warmup Iteration 2: 34104.930 ops/s
# Warmup Iteration 3: 34519.419 ops/s
# Warmup Iteration 4: 34535.636 ops/s
# Warmup Iteration 5: 34508.781 ops/s
Iteration 1: 34497.252 ops/s
Iteration 2: 34338.847 ops/s
Iteration 3: 34355.355 ops/s
Iteration 4: 34105.801 ops/s
Iteration 5: 34104.127 ops/s
Result "com.tutorialspoint.test.Operations.timeTakingProcess":
34280.276 ±(99.9%) 660.293 ops/s [Average]
(min, avg, max) = (34104.127, 34280.276, 34497.252), stdev = 171.476
CI (99.9%): [33619.984, 34940.569] (assumes normal distribution)
# Run complete. Total time: 00:01:40
REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on
why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial
experiments, perform baseline and negative tests that provide experimental control, make sure
the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts.
Do not assume the numbers tell you what you want them to tell.
NOTE: Current JVM experimentally supports Compiler Blackholes, and they are in use. Please exercise
extra caution when trusting the results, look into the generated code to check the benchmark still
works, and factor in a small probability of new VM bugs. Additionally, while comparisons between
different JVMs are already problematic, the performance difference caused by different Blackhole
modes can be very significant. Please make sure you use the consistent Blackhole mode for comparisons.
Benchmark Mode Cnt Score Error Units
Operations.timeTakingProcess thrpt 5 34280.276 ± 660.293 ops/s