Statistics 简明教程

Statistics - Quadratic Regression Equation

采用二次回归法计算出最适合给定数据集的抛物线方程。其形式如下:

Quadratic regression is deployed to figure out an equation of the parabola which can best fit the given set of data. It is of following form:

最小二乘法可用于找出二次回归方程。在此方法中,我们找出 a、b 和 c 的值,使每个给定点 (${x_i, y_i}$) 和抛物线方程 (${ y = ax^2 + bx + c}$) 之间的垂直距离平方最小。抛物线曲线的矩阵方程由下式给出:

Least square method can be used to find out the Quadratic Regression Equation. In this method, we find out the value of a, b and c so that squared vertical distance between each given point (${x_i, y_i}$) and the parabola equation (${ y = ax^2 + bx + c}$) is minimal. The matrix equation for the parabolic curve is given by:

Correlation Coefficient, r

相关系数 r 决定了二次方程可以多好地拟合给定数据。如果 r 接近 1,则拟合效果良好。可以使用以下公式计算 r。

Correlation coefficient, r determines how good a quardratic equation can fit the given data. If r is close to 1 then it is good fit. r can be computed by following formula.

通常,使用二次回归计算器来计算二次回归方程。

Generally, quadratic regression calculators are used to compute the quadratic regression equation.

Example

Problem Statement:

Problem Statement:

计算以下数据的二次回归方程。检查其最佳拟合度。

Compute the quadratic regression equation of following data. Check its best fitness.

x

-3

-2

-1

0

1

2

3

y

7.5

3

0.5

1

3

6

14

Solution:

Solution:

在计算器上输入 x 和 y 值来计算二次回归。上述点的最佳二次回归方程如下:

Compute a quadratic regression on calculator by putting the x and y values. The best fit quadratic equation for above points comes as

要检查最佳拟合度,请绘制图形。

To check the best fitness, plot the graph.

quadratic regression

因此,数据相关系数 r 的值为 0.99420,接近 1。因此,二次回归方程最适合。

So the value of Correlation Coefficient, r for the data is 0.99420 and is close to 1. Hence quadratic regression equation is best fit.